
Spoken Language Generation - Part II

Aitor Azcarate Joeri Honnef Jelle Kastelein
0017949 9992359 0026549

Paul Koppen Abdullah Özsoy Liang Wang
9936696 0108901 0010782

Klara Weiand
0529478



Abstract

In this paper, we explore two sides to expressive speech synthesis. The first is the identification and
simulation of different speakers, the second is the synthesis of emotional speech. The two are then
combined, generating expressive characters that provide emotional spoken language. All of this is done
within the context of fairy tales, as this is expected to be a particularly suited domain.



Contents

1 Introduction 2

2 Group 1 3
2.1 Annotating and defining character

speakers . . . . . . . . . . . . . . . . 3
2.1.1 Speaker definition . . . . . . 3
2.1.2 Tagging . . . . . . . . . . . . 4

2.2 Character evaluation . . . . . . . . . 5

3 Group 2 6
3.1 Synthesizing expressive speech . . . 6
3.2 Emotion evaluation . . . . . . . . . . 7

4 Combining characters and emotions 7
4.1 On-the-fly summation . . . . . . . . 8
4.2 Stepwise annotation of emotions . . 8

5 A note on Festival 8

6 Conclusion 8

A Individual work 10
A.1 Group 1 . . . . . . . . . . . . . . . . 10

A.1.1 Jelle Kastelein . . . . . . . . 10
A.1.2 Liang Wang . . . . . . . . . . 10
A.1.3 Klara Weiand . . . . . . . . . 11

A.2 Group 2 . . . . . . . . . . . . . . . . 12
A.2.1 Joeri Honnef . . . . . . . . . 12
A.2.2 Paul Koppen . . . . . . . . . 12
A.2.3 Aitor Azcarate Onaindia . . . 13
A.2.4 Abdullah Zeki Özsoy . . . . . 13

B Character definitions 16
B.1 The Narrator . . . . . . . . . . . . . 16
B.2 A Mad Tea Party . . . . . . . . . . . 16
B.3 Mouse and Mouser . . . . . . . . . . 16
B.4 The Hillman and the Housewife . . . 16
B.5 Tom Tit Tot . . . . . . . . . . . . . 16

C Characteristics of emotions 17
C.1 Neutral . . . . . . . . . . . . . . . . 17
C.2 Sad . . . . . . . . . . . . . . . . . . . 17
C.3 Angry . . . . . . . . . . . . . . . . . 17
C.4 Happy . . . . . . . . . . . . . . . . . 17

1



1 Introduction

This report will investigate methods to combine dif-
ferent voices and emotions in a synthesized spoken
text. This combination should increase the real-
ism of the text, as well as prolong its listenability.
Of course, the ability of the Text-To-Speech (TTS)
system to generate listenable text is an important
one, particularly in, but not limited to, situations
where the task is directed at entertaining the au-
dience. With this in mind, we will demonstrate
these techniques by applying them to the spoken
language synthesis of several fairy tales. Fairy tales
are very well suited for this task because they use
the full range of emotions, as well as direct speech.
Since children are often easily distracted, the lis-
tenability of the text is particularly important.

In an effort to make our approach as general as
possible, we made use of an existing, and widely ac-
cepted markup standard, known as SABLE1. This
language defines a variety of XML tags that mod-
ify vocal features, such as speed, pitch and volume.
Using a markup language, rather than, say, Festi-
val2 scripts, means that we have a way of generating
synthesized speech under any TTS system that sup-
ports this markup. An advantage of using SABLE
is that it is supported by many different TTS sys-
tems, even though it is no longer being maintained.
The new standard, SSML3, is very promising, but
lacks easy incorporation in Festival. Since SSML
and SABLE are similar in many ways, our approach
should, in principle, work for both languages.

The project consisted of two parts.

1 To annotate and define character speakers

2 To synthesize expressive and emotional speech

Each of these tasks is carried out by a single group.
Finally the two will be combined into a single
framework. Two different approaches to accom-
plishing this symbiosis of speaker and emotion were
tested, one in which emotion was added separately
to a SABLE file that was already labelled with dif-
ferent speakers, another in which emotions were
added on the fly before generating the SABLE file.
Each has it’s own advantages and disadvantages,
which will be discussed later.

1www.bell-labs.com/project/tts/sable.html
2Festival is the speech synthesis system that was used.

See http://www.cstr.ed.ac.uk/projects/festival/
3http://www.w3.org/TR/speech-synthesis/

Basically, all the differences in character voices
and emotional style can be made by adjusting only
a few specific parameters. In SABLE, the most
important characteristics that can be adjusted are:

• Basic speaker voice, as denoted by the XML
tags:
<SPEAKER NAME=“..”>
</SPEAKER>
which selects a specific speaker voice.

• Baseline Pitch, as denoted by the tags:
<PITCH BASE=“..”>
</PITCH>
which defines the baseline pitch offset for the
character voice.

• Pitch Range, as denoted by the tags:
<PITCH RANGE=“..”>
</PITCH>
which can be combined into one tag with the
baseline pitch, and defines the vocal range off-
set.

• Rate of speech, as denoted by the tags:
<RATE SPEED=“..”>
</RATE>
which controls the speed at which the text is
spoken.

• Volume of speech, as denoted by the tags:
<VOLUME LEVEL=”..”>
</VOLUME>
which controls the volume of a character’s
voice.

All offsets are measured in percentages. Similar
tags can be nested, and the resulting offset of a
nested tag will be relative to the corresponding out-
side tag. So, if an initial offset of 100% is given for
the pitch base, and we nest another pitch base off-
set tag within it, the result will be cumulative.

There are some more tags to consider, which can
help to increase the textual flow, such as adding em-
phasis statements (with <EMPH>“..”</EMPH>)
or breaks (with <BREAK/>).

Keeping in mind the two tasks mentioned above,
we will start by describing the annotation and def-
inition of different character speakers, followed by
the approach to synthesizing the four basic emo-
tions, the attribute values of which were based on
the emotional values as proposed in [2]. Finally,

2



each of the two approaches to the combination of
the two projects will be discussed.

2 Group 1

2.1 Annotating and defining charac-
ter speakers

The fairy tales were selected from a range of compi-
lations of fairy tales retrieved from the Gutenberg
catalogue of free ebooks4. A subselection of fairy
tales was then made according to the following cri-
teria:

• the length of the fairy tales – some fairy tales
span several chapters and were thus considered
to be too long

• the ratio of direct speech

• the occurrence of emotions and their range

The latter two points are important because this
work is concerned with synthesizing text, using dif-
ferent speakers and emotions, and the text chosen
should of course be suited for that task, in that
it allows for the use of different voices and the
full range of emotions. From the resulting fairy
tales, four were selected to be used for the remain-
der of the project: “A Mad Tea Party”, an excerpt
from “Alice’s Adventures in Wonderland” by Lewis
Carroll, “The Hillman and the Housewife”, from
“Old-Fashioned Fairy Tales” by Juliana Horatia
Gatty Ewing, and “Tom Tit Tot” and “Mouse and
Mouser”, from “English Fairy Tales” by Joseph Ja-
cobs.

2.1.1 Speaker definition

As was pointed out earlier, fairy tales are very
well suited for experimentation with emotional,
multiple-character speech, because they usually
contain a fair amount of direct speech from dif-
ferent characters, as well as emotional passages.
The first thing needed was to identify these sep-
arate speakers, and create voices that sound char-
acteristic, given the definition of their character.

4http://www.gutenberg.org/

Each speaker was manually assigned a voice, gen-
der, initial SABLE settings and a number of differ-
ent attributes, which were later converted to use-
able SABLE markup. Since the voice to be used
has to be specified explicitly in SABLE either by its
name or the gender and a number (e.g. male2), the
“gender” tag serves no direct purpose in this imple-
mentation. However, it is supported as a valid flag
within SABLE itself, and other markup languages
like SSML, which we also experimented with, make
use of “gender” tags, which might thus prove useful
in further adaptations.

While there are seven different male voices avail-
able for Festival and MBROLA5, a speech synthe-
sizer that can be integrated with Festival, only one
female voice was provided. This meant that all va-
riety and characteristics in the female voices had to
be achieved through modification of the one female
voice in the initial SABLE settings, while for male
characters the range of different voices allowed for
the selection of the voice that was considered to be
best suited for each character.

Aside from the SABLE features describing pitch,
rate of speech and volume, we assigned each
speaker an “age” and “species” tag, which were
used to automatically adjust the voices, depending
on the properties of the different characters.

There is an “age” feature already defined in
SABLE, but for some speakers, its usage did not
seem to do anything in Festival, and so we used
the age tag to modify the speech parameters di-
rectly when defining a character’s voice instead.
The pitch base is the primary parameter to be mod-
ified. We lower the pitch by a percentage equal to
the age of the speaker (so, a speaker 30 years of age
will have a pitch modification of -30% with respect
to the baseline we defined).

The species parameter assigns features to non-
human characters that we found to be characteris-
tic for their creature type. A mouse, for instance,
will get a +150% pitch base modifier, resulting in a
very high-pitched voice, whereas a cat will receive
a +200% pitch range modification, yielding a voice
that sounds very animated and expressive. It will
also be quite slow, making it sound like the cat
might be purring, or, in some cases, even slightly
predatorial and threatening.

Of course, if we want to control all SABLE pa-

5http://tcts.fpms.ac.be/synthesis/mbrola.html

3



rameters directly, we can just set the age to 0 and
the species to “human”, which will result in a 0%
offset for all parameters.

The final voices are thus a combination of the
manual selection of voice, the initial parameter val-
ues, and the automatic adjustment based on the
“age” and “species” tags. For example, the voice
of the Dormouse, a sleepy mouse in “A Mad Tea
Party”, is initially defined as

DORMOUSE = speaker(name="DORMOUSE",
sex="male", age=15, base_speaker="male3",
pitch_base=45, pitch_middle=15,
pitch_range=-44, rate_speed=-18,
volume_level=-62, species="mouse")

where the base speaker is the MBROLA voice used
for this character. The low values for pitch range,
speed and volume convey the “sleepiness”6 of the
character, yielding a quiet and monotonous voice.
The conversion script then increases the pitch base
by 150% because “species” is set to “mouse” and
adjusts pitch values according to the age of 15. For
a small analysis of each of the characters, see ap-
pendix B.

2.1.2 Tagging

In order to be able to let Festival read the fairy tales
out loud with the appropriate voice for each differ-
ent speaker, an indication must be given of where a
change of speaker takes place. The same is true for
a change in emotional state. To accommodate for
this, the files were hand-tagged by the members of
group 1. Because it is important to be able to make
on-the-fly adjustments in the character definition,
the tags used at this stage are not yet in SABLE
markup. Instead, we tagged each file using tags of
the form [[EMOTION,SPEAKER]] at each speaker
change, where EMOTION is an element of the set
of emotions and SPEAKER an element of the set
of speakers. These tags were then converted into
proper nested SABLE markup by the same script
that automatically adjusts the voices (see above).
All text in between two tags is assumed to be spo-
ken by the same speaker with the same emotional
state. Each tag is then replaced by closing tags
for the preceding speaker, followed by opening tags

6Which could of course also be automated by adding
“sleepy” and the corresponding features to a new set of
“state” tags, or perhaps to the set of emotions used.

for the next speaker7. For instance, if we have the
tag for the angry character of the Cat in the tale
“Mouse and Mouser”, [[A, CAT]], we replace this
tag by

</VOLUME>
</RATE>
</PITCH>

</EMOTION>
</SPEAKER>

<!-- A -->
<!-- CAT -->
<SPEAKER
NAME="female1"
GENDER="female"
AGE="teen">

<EMOTION NAME="angry">
<PITCH BASE="40%"
MIDDLE="-135%"
RANGE="301%">
<RATE SPEED="-36%">
<VOLUME LEVEL="-24%">

This way, by assuming the same order of tags
for all speakers, we can do a simple regular-
expression-based find-and-replace search for the
[[EMOTION,SPEAKER]] tags. But this does
mean that each file must start with a speaker tag.
If no speaker tag is found, we insert the Narra-
tor as a default speaker. The <EMOTION> and
</EMOTION> tags were added to be able to use
the XML transform filter of group two for emotion
addition8.

Finally, where it was deemed appropriate, the
hand annotated files were tagged with additional
<EMPH> and <BREAK/> tags in order to im-
prove the flow and naturalness of the speech.

7This works because the closing tags are always the same,
and because we used the same tag set in the same order for
each speaker. Because the first tag in a file is also replaced
in the same way, the file will start with closing tags, which
would have no opening tags. We simply remove the charac-
ters that comprise the first closing tags.

8This means that the file in question is not yet a fully
useable SABLE file, and thus we output it as a “.emsable”
file, to indicate that further modification is still required.
The script also allows us to add emotions directly, inside
the script, omitting the intermediate step of using emotion
tags, and thus producing a directly useable SABLE file.

4



ALICE HARE HATTER DORMOUSE

ALICE 4 0 0 0
HARE 0 2 2 0

HATTER 0 2 2 0
DORMOUSE 0 0 0 4

Table 1: Identification matrix for “A mad tea
party”.

2.2 Character evaluation

To give a (very basic) evaluation of the voices cre-
ated, the members of group 2 were asked to listen to
a sample file in which all the characters spoke one
line. The narrator was explicitly given in advance,
since his voice was the same in every fairy tale, and
it was felt that, given the narrating style the nar-
rator has in the fairy tales, it would be impossible
to misidentify him. This meant that each member
of group 2 had to identify three groups of four, and
one group of two characters, making for a total of
14 characters to be evaluated. The complete test
took 3 minutes and 21 seconds.

The voices in the test were grouped by fairy tale.
To make sure that the identification could be made
without hearing the complete tale, a short, one line
summary of the fairy tale to be judged was given
by the narrator before each identification group, in
order to provide some context. The summary text
for the Tom Tit Tot story, for instance, was

“The second story is Tom Tit Tot. It’s
a story about a girl who must guess the
name of a leprechaun, or be his forever.”

Each character then spoke a sentence based on the
following template:

I am one of the voices of [fairy tale name].
There are [N ] characters: [a comma de-
limited list of characters], and the narra-
tor. Guess who I am?

where the items between brackets differed for each
fairy tale, and N is the number of characters in
the story, plus the narrator. Since we only have
four evaluations for each voice, the numbers provide
only a rough estimate of the ease with which each
voice can be identified.

As is seen in table 1, most of the identifications
for “A Mad Tea Party” were made correctly. The

MOTHER DAUGHTER TOM KING

MOTHER 4 0 0 0
DAUGHTER 0 4 0 0

TOM 0 0 4 0
KING 0 0 0 4

Table 2: Identification matrix for “Tom Tit Tot”.

MOUSE CAT

MOUSE 4 0
CAT 0 4

Table 3: Identification matrix for “Mouse and
mouser”.

only misidentification is a switch between the mad
hatter and the march hare, both of whom are male,
and supposedly mad, and thus on first view do not
differ very much in terms of their characteristics.

All the identifications for “Tom Tit Tot”, dis-
played in table 2, were correct. This is no surprise,
since each of the characters has quite distinct char-
acteristics.

All the identifications for “Mouse and Mouser”,
displayed in table 3, were also correct. Again, the
differences between the two characters are quite
large, and so there was little room for confusion.
Finally, table 4 shows the identifications made for
each speaker of the fairy tale “The hillman and the
housewife”. This fairy tale has the most confusing
set of speakers, since the chimney and the hillman
actually turn out to be the same speaker (but we
did create two separate speakers with a very small
pitch and volume difference). Since the two are
practically the same, we suspect that the listener
can only guess.

The results speak for themselves. Even with only
little information about the characteristics of the
speakers, 8 out of 14 speakers were identified cor-
rectly unanimously and two by majority, and in
no case was a speaker clearly misidentified by the
majority of votes. The problems that arise seem
to stem mostly from swaps between similar charac-
ters. One must also keep in mind that the evalua-
tion synthesis used has placed each character out-
side of the context provided in their respective fairy
tale, and it will be much easier to distinguish them
within the context of a fairy tale, since explicit cues
are often given by the narrator, who, through the

5



SERVANT CHIMNEY WIFE HILLMAN

SERVANT 3 0 1 0
CHIMNEY 0 2 0 2

WIFE 1 0 3 0
HILLMAN 0 2 0 2

Table 4: Identification matrix for “The hillman and
the housewife”.

role he takes in the narration of the fairy tales, will
be almost impossible to misidentify. Overall, we
consider the construction of voices successful, as
the rate of correctly guessed voices is high and, as
explained above, the contextual cues will ease the
identification of the few characters for whom the
identification was ambiguous in the test.

3 Group 2

3.1 Synthesizing expressive speech

Our goal is to express four basic emotions in natural
speech; neutral, happiness, anger and sadness. The
relevant and promising synthesis parameters that
will realize these emotions have already been men-
tioned in the introductory section (e.g.: Baseline
Pitch, Pitch Range, Rate of Speech, and Volume).

Currently, a lot of research is being done on emo-
tions in information technology in general. We
claim that adding emotions to speech in daily life
user systems makes people feel more understood by
these computers. Although we have not researched
any scientific evidence of this claim, it does seem
very intuitive.

For example: When we synthesize a fairy tale
for children, they will immediately notice the dif-
ference between a monotonous synthesized piece of
text, or one with added emotions. But, of course,
not only children will notice this difference. Al-
most all of us know the ’silly’ sounding applica-
tions of public transportation systems, which offer
realtime feedback by telephone. Either they do not
adequately interpret your question, or they simply
do not properly identify the right words you are
pronouncing, but in the end, the most upsetting
thing about these applications for many people, is
that there is almost no intonation and emotion un-
derlying the voices with which they reply. In all
likelihood, these systems will be much more listen-

able to the average human user, and will therefore
be used a lot more, if they sound a bit more natu-
ral. Adding more emotion to a synthesizer will thus
make it sound more empathic, even if the content
that it pronounces is complete rubbish.

So, what core principles do actually define emo-
tions? We all know what emotions are, and we
know how they are expressed, but they are so com-
mon that we do not really consciously process them
anymore. When we are asked to define these speech
core principles we all directly name things like vol-
ume and pitch. When we further elaborated on
these two we finally found that there are, of course,
more than just these two. For this experimental
setup, we chose to fine tune the parameter values
mentioned in the main introduction of this report.
Our task, basically, was to find the right values
for these parameters. In finding these, we used a
more fine grained table of parameter values from
the paper by Pirker et al., [3]. We compressed this
table (see table: 5) and translated the values af-
terwards into parameter values for the SABLE do-
main.

The next paragraph will describe what approach
we used in order to transform an input XML file
of group one into a proper formatted XML output
file, which is the actual SABLE file which is fed
into the speech synthesizer. And why we chose for
this XML/XSL approach.

The Extensible Stylesheet Language, XSL here-
after, is the standard for transforming one XML
structure into another. This is very useful if dif-
ferent applications require different formats, but
they want to share the same information. Exactly
this is the case in the connection between the char-
acter generation and emotion definition. Because
SABLE is conform XML standards, the output of
group 2 (first structure of information) can easily
be transformed so that emotional vocal parame-
ters are injected (second structure of information).
The XSL file first matches the root SABLE tag.
Then it starts a search for <EMOTION/> tags
where the emotion values will be placed. All in-
formation outside these tags is, without modifica-
tion, copied to the output, so <SPEAKER/> and
other definitions remain intact. For each recognized
<EMOTION/> tag, the name is searched for in a
separate XML file that holds all particular settings
for the different emotion types (sad, happy, angry
and neutral). The result from that XML file is

6



Angry Disgusted Happy Sad Scared Surprised
avg pitch -5 0 -3 0 10 0

pitch range 10 3 10 -5 3 8
volume()0-1 10 3 0 -5 10 5
speech rate 8 -3 2 -10 10 4

Table 5: Table extracted from paper by [3]

a collection of tags (<PITCH/>, <RATE/> and
<VOLUME/>) with attributes and their appropri-
ate values. These tags are then recursively placed
into the output. The innermost tag is then filled
with the original content of the <EMOTION/>
tag, which is the text that has to be synthesized
with this emotion. The application of this XSL
transformation is carried out by python, writing
the result to a .sable file. Then python makes a
system call to run Festival on this file so that the
emotional fairy tale is spoken wisely by our beloved
narrator.

After these transforms, we just listened to the
results and used our common sense to adjust the
parameters here and there.

In the end, we realized that speech with a higher
degree of emotion is probably possible if we could
also adjust pitch contour and do the annotation at
word-level. Doing this at word level requires some
understanding of the text. For example, proper
nouns are good indicators of text content. Word-
Net9 could be used to get some more understanding
of what kind of emotions are expressed in the text.
After the classification of the emotion in a sentence
or even at a more detailed level at positions within
a sentence we can annotate the speech synthesis pa-
rameters, and get better emotional and expressive
speech synthesizers.

3.2 Emotion evaluation

Evaluating the emotions
While defining the emotions we changed the val-

ues of the parameters to reflect our own recognition.
Sad was very recognizable. It sounded too slow
though, thus we increase the speed. The emotion
’happy’ was intensified because it sounded better,
we did this by increasing the pitch base and volume.
Neutral was changed to make it fit better in com-
parison to the other emotions. It should not have

9http://wordnet.princeton.edu/

as narrow a range as sad. It should have a normal
speed, and since we changed the speed of the other
emotions a small speed increase was needed. We
also increased the speed of ’angry’, this felt more
threatening.

We evaluated our emotions on different people,
members of the other group and friends. We used
sentences that did not have an emotional meaning
(e.g. ’Would you close the door please?’) but still
could be interpreted as emotional statements be-
cause we did not want to prejudice our test results.
We gave the test subjects a list of the emotions to
choose from and a sound file with the different emo-
tions. The test subjects listened to the sound file
and gave feedback on the emotions heard in every
sentence.

The result matrix can be found in table 6.

neutral angry sad happy
neutral 5 0 0
angry 0 5 0 0
sad 0 0 5 0

happy 0 0 0 5

Table 6: Evaluation scores of the emotions.

As can be seen in the result matrix all subjects
correctly recognized the emotions. For our current
needs this is sufficient and we did not further adjust
the emotions any more.

4 Combining characters and
emotions

In this section, two approaches to the construction
of the symbiosis between characters and emotions.

7



4.1 On-the-fly summation

One downside to using new <EMOTION> tags is
that they are not part of the SABLE markup def-
initions. This means that the output files are not
directly useable, since they contain undefined op-
erations. By simply summing the emotion-specific
pitch, volume, and rate of speech values found by
group 2 with the values specific to the speaker in-
side the tag-replace script, the values for emotional
speech can be synthesized on-the-fly, rather than
using <EMOTION> tags. This means that the
output files are directly useable for TTS systems
with SABLE support. We can also combine10 emo-
tional values very easily this way, simply by taking
the average values of the emotions in question. This
gives a somewhat more nuanced range, which can
be useful, for instance, when gradually switching
between emotional states for a single speaker, or
when toning down an emotion by uniting it with a
Neutral tag.

A downside of this approach is that we cannot
easily modify existing SABLE files by adding emo-
tions. This is where the second approach to com-
bining speakers and emotions comes in, which was
implemented by group 2.

4.2 Stepwise annotation of emotions

This process can be divided up into two steps.
Step one, performed by group 1 outputs an XML
file. This file contains the emotion tags specific to
each speaker.In this way the XSL tranform knows
what pieces of XML to transform into what spe-
cific SABLE parameter values. As group 1 decided
to use the emotion definitions of group 2 and to
build in a nice facility to convert their own hand-
made tags on the fly to the desired output SABLE
file, group 2 decided to adhere to the XML stan-
dard. In this way we can interpret any third-party
SABLE file which contains characters and add the
emotions using the XSL transform discussed before
in section 3. A small drawback of this technique is
that we absolutely need the emotion tag, which is
currently not a standard tag in the SABLE defini-
tion and off course will never be there since SABLE
is not maintained anymore. On the other hand,

10For instance, if the MOUSE speaker is both Angry and
Sad, we use the tag [[AS,MOUSE]], with the emotion tags
in alphabetical order.

people can define their own DTD specifications for
their output character XML files. This enables
group 2 to easily rewrite their script, which exten-
sively makes use of XML libraries which support
reading DTD files and so interpreting new XML
input files of third-parties.

5 A note on Festival

A final note that should be made before present-
ing our conclusions, is that getting Festival to run
correctly with the MBROLA voices on the Univer-
sity computers proved to be practically impossi-
ble. Even after the required voice files were in-
stalled, and after having changed parts in Festi-
val itself, the program still did not generate speech
from SABLE or SSML files. Some other TTS sys-
tems were also considered, but these systems ei-
ther provided only limited support for automati-
cally generating speech from annotated text, or a
limited subset of the functionality of the annota-
tion.

6 Conclusion

Although a few errors were made in trying to iden-
tify the different character speakers, the larger part
was successfully identified. We have only little eval-
uation data at this point, but we foresee no prob-
lems with the current approach. In fairy tales in
particular, the characters are often quite polarized,
which means that they can be easily distinguished.

The definitions of the emotions were taken from
a table defining these emotions (as seen in figure 2).
These emotional parameters were then slightly ex-
aggerated, according to the ability of the members
of group 2 to recognize them. At this point, the
ability to identify these emotions is a more impor-
tant goal than making them sound exactly human-
like. It was found that this strategy was justified by
the evaluation performed by group 2, the guesses
of whom were all correct. Of course, the fact that
there were only four emotions to be considered in
this experiment, the set of which was given in ad-
vance, may well have played a role. It may also
be the case that the emotions are easier to identify
relative to one another than they are individually.
In spite of this, we feel confident that the results

8



found with the current definitions of the emotions
satisfied the project requirements.

A question that does arise, is whether SABLE is
the best possible option for generating emotional
speech. A particular shortcoming of this markup is
that it is severely limited in it’s ability to control
the prosodic contour of a sentence. Although em-
phasis can be added, this has only limited effect,
and often the side effects of stressing one word on
the rest of the sentence are quite hard to predict.

In spite of this, the end result sounds quite nice.
The synthesis is relatively lively, and inside the con-
text of each fairy tale, the characters are easy to
keep track of. Therefore, we consider the project
to be a success.

References

[1] J. Cahn. Generating expression in synthesized
speech, 1989.

[2] Silvia Quazza Stefano Sandri Enrico Zovato, Al-
berto Pacchiotti. A rule based approach to-
wards emotional speech synthesis:. In Proceed-
ings of the Fifth ISCA ITRW on Speech Syn-
thesis (SSW5), pages 219–220, 2004.

[3] H. Pirker and B. Krenn. Assessment of markup
languages for avatars, multimedia and multi-
modal systems. In NECA-project, Deliverable
D9c, May 2002, 2002.

9



A Individual work

A.1 Group 1

Below are the individual achievements of each
group member of group 1, in alphabetical order.
It should be noted that, although it is not exten-
sively dealt with in this report, getting Festival to
work the way it should with the extra voices turned
out to be no small task, and many hours were spent
getting this program to run on a number of different
systems, as well as searching for viable alternatives.

A.1.1 Jelle Kastelein

First, after we had divided the hand annotation
workload between the members of our group, I an-
notated two of the fairy tales that were picked.
The first was “Tom Tit Tot”, and the second
was “Mouse and Mouser”. In order to make
the annotation both easy and modular, and be-
cause, at this point, we were still unsure of what
markup we were going to use (SSML or SABLE?),
I wrote a first version of a script that searches for
[[EMOTION,SPEAKER]] tags, and replaces them
by some very basic, fictional, XML-like markup.
The hand annotated tags are very simple, and in-
dependent of the specific markup or parameter set-
tings, and made the annotated text more transpar-
ent. The first version of the script used a markup
that we defined, and we expected to convert this to
the final markup (e.g.: in SABLE) when we com-
bined them with the emotion parameters. Once
it was clear, however, that we were going to use
SABLE, I completely rewrote the script in a more
principled way, to output SABLE markup directly.
Because it seemed like the sensible thing to do, and
because it followed naturally from the current find-
and-replace implementation, I simply summed the
emotion settings of group 2 with the speaker set-
tings (or the average of those settings for an emo-
tion combination) in this script. In order to accom-
modate for the option of testing the XSL trans-
form of group 2, I also added an option to out-
put “.emsable” markup, which contained explicit
<EMOTION> tags, rather than summing the emo-
tions on-the-fly.

After many prior attempts at doing so, and with
much help from Klara Weiand, who had previously

managed to get Festival to work under Ubuntu11

and had made valiant attempts at doing so under
OS X, I finally managed to get Festival to work
with the extra MBROLA voices under Cygwin12.
Getting Festival up and running took quite a bit of
time, but once we had it working, the project made
rapid progress.

With the script in place, all we really had to
do was create, and experiment with the different
speaker settings for each of the speakers that the
script searched for, and so it was time to start work-
ing on our characters. Klara had made a head start
on that part, and was of great help, so that the ini-
tial settings for each of the characters in the two
stories (Tom Tit Tot, the King, the daughter and
the mother, and the mouse and the cat, for “Tom
Tit Tot” and “Mouse and Mouser” respectively)
were defined quite fast. After that, I did a lot of
fine tuning for each character, and I added some
statements for word emphasis and some breaks to
increase the flow of the text.

To evaluate our system, I created a test file (an-
notated in the same way as we did the fairy tales)
for the other group to hear, in which each of the
characters presented themselves in turn. I did this
on the basis of a preliminary test made by Klara
that was meant for our group alone.

At this point, Liang was facing a personal crisis
for which he had to leave for China, and so I did
some final refinements on the voices of the charac-
ters of the story he annotated, “The Hillman and
the Housewife”, as well as adding some emphasis
and break statements.

Finally, I wrote part of the report presented here,
in large part in collaboration with Klara, I did a lot
of the work on the layout of the document, and I
participated in creating the presentation.

A.1.2 Liang Wang

NOTE: Because Liang could not be here for the
latter part of the project due to unforseen circum-
stances, he was not able to provide us with his in-
dividual work paragraph. Therefore, we can only
provide a summary of what we know he has done.
This list may not be exhaustive. We feel that, for
the time he was working with us, he showed equal

11http://www.ubuntu.com/
12Cygwin is a Linux-like environment for Windows

(http://www.cygwin.com/).

10



dedication to this project to both the other members
of the group.

• Searched for possible alternatives to the Festi-
val TTS system and SABLE markup language

• Hand annotated “The Hillman and The
Housewife”

• Created voices for “The Hillman and The
Housewife”:

– Hillman

– Housewife

– Chimney

– Servant Girl

A.1.3 Klara Weiand

I started by finding and preselecting the fairy tales
that were going to be used in the project. That is,
I downloaded a broad selection of fairy tales from
Project Gutenberg, decided what properties a fairy
tale should have in order to be suited for further use
(see section 2.1) and compiled a selection of fairy
tales that seemed appropriate. I also added “A
Mad Tea Party” to the selection, since, while not as
traditional a fairy tale as the others, it seemed par-
ticularly well-suited for this project. The selection
of the final four fairy tales was then done by the
whole group. I then used Jelle Kastelein’s script
and tag system to annotate “A Mad Tea Party”
with speaker information. I also wrote a script that
formatted the annotated text into a clearer format
whose functionality was later incorporated by Jelle
into the Python script responsible for converting
the tags. A big part of my work was concerned with
getting Festival and the voices it uses to run. Mor-
phix NLP is a live CD that provides a big number of
language and speech processing tools including Fes-
tival. However, since Morphix NLP only provides
Festival with two voices – none of them female –,
I turned to an installed version of Ubuntu Linux
and worked out how to install further voices for
Festival and MBROLA. The latter was important
because none of the voices provided directly for Fes-
tival are female which could have posed a problem
for creating good voices for the female characters.
Through the use of MBROLA, the number of voices
we could use increased by several male and one
female voice. Once Festival, including the voices

was working, I familiarized myself with the software
and the SABLE markup language and created the
first versions of the voices for the characters in “A
Mad Tea Party”, part of whose definition (i.e. age
and species) was later facilitated and improved by
the script that Jelle wrote. I then created a first
test file that I sent to the members of my group
as a very first test of the voices. Since the other
group initially used SSML as a markup language,
I made the changes necessary to enable Festival to
process SSML files and tried to find a way to use
SSML to convey the same values for the speakers
that were already present in the SABLE files gen-
erated by the Python script. This failed however,
and both groups later decided to use SABLE rather
than SSML. After the Python script was improved
to being able to automatically add emotions, and
in part generate the basic voice definitions (using
age and species information), I fine-tuned my voices
and used the wave files produced for “A Mad Tea
Party” to improve text flow and emphasis in the
reading of the story by adding SABLE tags like
< BREAK/ >. Finally, I wrote the section about
the work of group 2 together with Jelle and took
part in creating the presentation. Since I found
the procedure installing Festival complete with all
voices, additional packages and MBROLA to be
inconvenient, overly complicated and badly docu-
mented, I modified the Ubuntu live CD to include
everything needed. The CD allows to run Festi-
val, including all components we used in an Ubuntu
system that runs from a CD and thus requires no
installation.

11



A.2 Group 2

A.2.1 Joeri Honnef

Before we actually generate the wave files, which
have to be examined at the end, we first have to
preprocess the input file. The input file is an XML
formatted file. For each sentence which has to be
processed we want to add different parameter sets
for the different predefined emotions. These pre-
defined emotions reside in another XML file which
is used by the XSL transform and acts like a sort
of external knowledge source. In this way the XSL
transformer knows what parameters have to be ap-
plied to sentences with different emotions. This
XSL transform, written by Paul, together with
an input file and the emotion definitions together
are all input for the final processor script which I
wrote(”process.py”). The script, written in python
makes use of a very fast XML binding specially
developed for Python (libxml2 and libxslt). The
XML library itself is part of the GNOME project
and written in the C language, this makes it espe-
cially suitable for larger projects when file sizes will
increase and speed has to be maintained. Imagine
case where whole parts of books have to be syn-
thesized automatically. In these kinds of cases a
lot of text has to be annotated with the emotional
SABLE parameters and we of course want this to
be fast. If it can be done off line, speed is not a
really big issue but again think of cases where all
has to be done real time. In these sort of situ-
ations the annotation process should be fast and
that’s why I chose for this low level library which is
accessable for a high level scripting/programming
language such as python. Another argument for the
use XML is that it is generally used in the indus-
try as a data container. The main characteristics
and properties of XML make it re-useable and at
the same time we do adhere to the standards of
the W3C. Not only in a industry setting but even
more in the scientific field the use of XML enables
effective and efficient collaboration. Now more on
what I did in this group assignment. In the be-
ginning I, just as all others, was contributing to
get Festival to work. Unfortunately a lot of time
went into this part of the assignment. But still I
learned a lot of all this and realized that also this
kind of ’stupid work’has to be done and should not
be underestimated. After all these installation pro-

cedures, MAKE, environment variables, tarballing,
etc. we finally got Festival working. I set up a
meeting at my place to do parameter tweaking and
listening session to get the right parameter values
for expressive speech. That was a whole lot of fun.
Finally, at the end of that day, we all were very
content with the results.Even the examinations of
the other group, regarding the sentences we synthe-
sized, were at a precision level of 100%. It should
be noted that this was a very small test group and
more reliable results must be obtained by a larger
test group. The process script I wrote to perform
the XSL transform actually does the following steps
in general:

• First it reads in the file onto which the xsl tran-
form is applied.

• Second, it reads in the XSL transform file.

• Third, we apply the XSL style file to the source
XML file

• Finally, the output is written to a command
line specified file and all file handlers are
closed.

My final task was writing the main introduction of
our group work in the report, the section named
“Synthesizing expressive speech” and the main in-
troduction of the complete report.

A.2.2 Paul Koppen

Four people needed to work together on a seem-
ingly simple task; adding labels to annotated text
that specify parameters to effectuate emotion in
synthesized speech. In order to get this task collec-
tively done it was important to divide the approach
strategically into sub-parts which could be sepa-
rately solved by each participant. Also, because
everyone was also busy with other projects apart
from this course, deadlines were set so progress was
ensured. This task of defining sections and manag-
ing collaboration was done by me.

During the first weeks it became more and more
important to get feedback of our works in the form
of sound, but nobody succeeded in getting Festival
to run. So a search for alternative speech synthe-
sizers was started. I came up with Microsoft TTS.
The advantage of it would have been it’s easy inte-
gration for scripting. Another good thing was that

12



it works with XML. The major drawback, though,
was that it had not enough parameters to express
emotions well. Therefore we rejected it as an al-
ternative. In the end, Rob van Son demonstrated
Festival working and soon we had it working on
home computers as well.

We requested the other group to deliver their
output in a XML format defined by us so that only
a single XSL transform would be needed to apply
the correct labels for the different emotions. The
strategy for the XSL transform was that param-
eters for emotional variance could be stored in a
single XML file so that all the XSL file would only
contain transform information whilst the expres-
siveness of speech was separately adjustable. Be-
cause I have much experience in this area I built
the XSL transform file together with the structure
for the XML settings file. The vocal parameters
were adjusted in a meeting at Joeri’s place so that
we could all agree on the actual values.

A.2.3 Aitor Azcarate Onaindia

Our group had the assignment of defining and
adding emotions to sentences. This assignment was
split in four sub assignments (the group was of size
four). My sub assignment consisted of two parts.
The first part was searching and reading publica-
tions for the definitions of emotions. The second
part was to automatically call Festival with the
sable file in python (the programming language we
used).

For the first part I searched in Google and found
different papers. Most of the papers only defined
the emotions in comparison to neutral. By this I
mean that the papers defined it as e.g. for sad the
speech rate being slower. Thus they did not give
numerical data to the different emotions. When
continuing with the search I found [1] where such
numerical data was given. When testing the dif-
ferent parameters we found that the emotions were
correct thus we used this paper for the definitions
of the emotions.

The second part was to automatically run Festi-
val with the sable file from python. I tried to in-
stall Festival with Cygwin on a windows computer.
I was able to run Festival but it didn’t do anything
(not even the SayText command). Thus I was un-
able to test if it worked on a windows machine.
Although this problem I managed to program that

you are able to enter the path to where Festival is
installed and then run Festival. For Unix machines
I did manage to get Festival to run automatically
with a sable file.

A.2.4 Abdullah Zeki Özsoy

First I tried to get Festival to run, like the oth-
ers in my group did, on Windows and Linux. In-
cluding the voices that were requested, by finding
and downloading them, or changing the voice in the
’ssm’ file did not work. Installing Cygwin on Win-
dows helped get rid of some errors that did not in-
fluence the normal text to speech, but getting rid of
those errors also did not help with the conversion of
annotated text, like Sable or SSML text, to speech
generation. If one gets rid of all the errors that
are generated we simply get the Festival program
to crash when we try to generate a SSML or Sable
text to speech. I also found a Graphical user inter-
face for Festival called Carnival, which one can use
to annotate speech with Sable or SSML but since
Festival was not working this was not very useful.

After that I installed JSML13 together with its
speech engine14. This engine had a demo appli-
cation which would allow you to manipulate four
things such as the pitch base, range, volume and
the speed of the speech, and generate this speech.
During that time I also found a table that explained
a bit in non numerical way on how emotions were
spoken by humans. I tried to implement this a bit
in JSML and tried to run it. This engine also could
not generate speech automatically from annotated
text.

One of my colleagues installed a Speech Develop-
ment Kit of Microsoft and recommended it to me.
When I wanted to learn more about this engine
I found out that this engine could only perform a
subset of the functionality of Sable [3]. For instance
it could not annotate and so also not generate dif-
ferent pitch ranges. Finally, after the suggestion
of the teacher, I tried to install Festival at home
in Ubuntu. This worked. After that I tried to
implement the emotions with the help of the ta-
ble Aitor found figure 2 in SSML. After getting an
error when I included a pitch range in the SSML

13For JSML Specification, see:
http://java.sun.com/products/java-media/speech
/forDevelopers/JSML/Specification.html#14914

14FreeTTS 1.2: http://freetts.sourceforge.net/

13



Figure 1: Effects of emotional speech on the human voice.

file I continued in Sable. In Sable I made a be-
ginning with generating the emotions using these
values together with sentences that did not have a
meaning from which one could be influenced. Then
I tweaked these values a bit according to my recog-
nition of these feelings, and forwarded it to my col-
leagues for review and demonstration. We then had
a meeting as a group were we tweaked these values
a bit more. When we were satisfied one of us got
a call, we tested our results with this person. We
got a positive recognition of all the emotions. We
did get a comment that the sad voice was a bit too
slow, as if it was going to commit suicide but just
not yet, so this caused another small tweak.

14



Figure 2: Detailed numerical vocal parameters for emotional speech.

15



B Character definitions

Where appropriate, we will place some remarks
on each character’s most distinguishing character-
istics. We will do so grouped by fairy tale, in alpha-
betical order. Note that, since MBROLA contains
only one female voice, the distinct characteristics of
the female characters in each fairy tale were created
purely by alterations in pitch, volume and speech
rate settings.

B.1 The Narrator

The narrator is the character with the most lines,
and the only character to appear in every fairy tale.
His voice is soothing, slow, and easy to compre-
hend. Because he is simply an observer, his speech
is always neutral in tone.

B.2 A Mad Tea Party

• The Mad Hatter: This male character has
a mad sounding pitch range.

• Alice: This female character’s voice is that of
a young girl.

• The March Hare: This character is quite
bossy, and so he speaks rather loudly. His tone
of voice is quite strict (he has a high rate of
speech), and to the point.

• The Dormouse: This male character is con-
stantly sleepy, and as a result has a low pitch
range, and little expressive power. He is also
a mouse, which means that his baseline pitch
will be quite high.

B.3 Mouse and Mouser

• The Mouse: This male character is a mouse,
which means that his baseline pitch will be
quite high.

• The Cat: In order to create a feline voice,
the cat has a very high pitch range, and talks
quite slow. This female character’s baseline
starts relatively low.

B.4 The Hillman and the Housewife

• The Hillman: This male character is a dwarf-
like creature, which means that his baseline
pitch will be quite high. He has a bit of an
accent, and generally talks in a cheery tone of
voice.

• The Chimney: This turns out to be the same
character as the Hillman, but the voice is com-
ing from the chimney, meaning that it’s a bit
softer, and it is emotionally annotated to be a
bit whiny.

• The Housewife: This woman is in her mid-
fourties, and has a lower voice than the other
female character, the servant girl.

• The Servant Girl: This is a young adult fe-
male, with only one line of text.

B.5 Tom Tit Tot

• Tom Tit Tot: This character is described
as “a little black thing”, which is impish, and
reminiscent of a leprechaun. His voice is even
higher than that of the Hillman, and his speech
is quite fast, always holding a devilish middle
between angry and cheery.

• The Daughter: This is the younger of the
two female characters. Most of the difference
between her voice, and that of her mother’s, is
achieved by using a different age parameter.

• The Mother: This woman is approximately
the same age as the Housewife, and the two
sound a lot alike, although there are subtle dif-
ferences.

• The King: The king has a posh-sounding
British accent. Because his life has been com-
fortable, his voice has had to endure very little
abuse, so he has quite a high pitched voice.

16



C Characteristics of emotions

To generate the emotions we used the pitch base,
pitch range, volume and speed parameters.

C.1 Neutral

The values of the parameters of this ’emotion’
should all be 0. We increased the pitch range for
neutral because sad should have a narrower range.
Taking the other emotions into consideration we in-
creased the speed a bit because neutral sounded to
slow.

C.2 Sad

This is the most recognizable of these emotions.
It should have a very slow speed. We speeded it
up because it sounded too slow. This emotion has
the lowest pitch range. The volume has to be lower
than neutral. The pitch base should be higher than
happy. We however did not implement it this way,
we made it somewhat high but not the highest pitch
base.

C.3 Angry

This emotion should have a high volume and speed.
It has a low pitch base with a high range. We
adjusted the values in comparison to happy.

C.4 Happy

This emotion is similar to angry. It has high volume
and speed, but both have to be lower than with the
angry emotion. The pitch base and range should
be high.

17


	Introduction
	Group 1
	Annotating and defining character speakers
	Speaker definition
	Tagging

	Character evaluation

	Group 2
	Synthesizing expressive speech
	Emotion evaluation

	Combining characters and emotions
	On-the-fly summation
	Stepwise annotation of emotions

	A note on Festival
	Conclusion
	Individual work
	Group 1
	Jelle Kastelein
	Liang Wang
	Klara Weiand

	Group 2
	Joeri Honnef
	Paul Koppen
	Aitor Azcarate Onaindia
	Abdullah Zeki Özsoy


	Character definitions
	The Narrator
	A Mad Tea Party
	Mouse and Mouser
	The Hillman and the Housewife
	Tom Tit Tot

	Characteristics of emotions
	Neutral
	Sad
	Angry
	Happy


