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1. INTRODUCTION 

Distance measures are used to specify the (amount of) (dis)similarity between (two) 
events, on the basis of specific properties. This definition of distance measures makes it 
possible to emphasis various characteristics which I consider to be important. In the 
speech domain one can replace the general term 'event' in this definition by 
'(multidimensional) speech signal'. Uni-dimensional physical characteristics, such as 
time, amplitude, or fundamental frequency, as well as their perceptual counter parts 
(duration, loudness, and pitch), are generally represented on a physical or perceptual 
scale. And although also with scale definitions there are already considerable 
difficulties, I will not discuss these any further. I will rather concentrate on spectro­
temporal (multi-dimensional) aspects of speech signals, such as one individual vowel 
spectrum, or a sequence of spectra describing a word, or one measure such as 
fundamental frequency as a function of time ('pitch contour'). 
A measure of similarity or distortion on the basis of such signal characteristics is an 
ever returning problem in all the areas of speech research indicated below. In speech 
analysis and coding an error signal is frequently used to optimize a parametric 
representation, such as linear predictive coefficients, or pitch extraction. In rule 
synthesis one has again to optimize parametric fits, such as pitch and formant contours. 
The area of speech recognition and understanding is most strongly related to distance 
measures. They are needed, among other things, for segmentation, clustering, vector 
quantization, and for testing the input parameters against reference data. However, also 
in speech perception there is a strong emphasis on (dis)similarity between signals. 
Confusion matrices as a result of identification experiments, similarity matrices as a 
result of triadic comparison or other similarity judgments, or scores on semantic scales, 
are all indications of perceptual distances. Furthermore it is important to study the 
relation between perceptual similarity and physical distance measures, or in other 
words, the perceptual relevance of distance measures . Especially in speech perception, 
one also should be aware of the distinction between physical identity and perceptual and 
phonetic identity: Two physically different signals might be identified as the same 
vowel /a/, for instance in various phonetic contexts, or from different speakers, or in 
different noise backgrounds. Depending upon its purpose, a distance measure should 
include all relevant information and neglect information irrelevant for that condition. 
In the following sections I will first give some general properties of distances and then 
describe perceptual and physiCal approaches for studying and optimizing distance 
measures. 

l) Written version of a paper presented at the 'Colloquium Signaalanalyse en Spraak', 

23 -25 Sept. 1987, Amsterdam. 
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2. GENERAL PROPERTIES OF DISTANCES 

The Euclidean distance is probably the best known measure to define the distance 
between any two points xi and xj in an n-dimensional space: 

di,j = ( f (Xi,k-Xj,k) 2 ] 1/2 (l] 
k=l 

This formula can be made more general by using the Minkowski parameter p: 

di,j = ( f ixi,k-Xj,kl p] l/p (2] 
k=l 

For p=2 this formula represents again the Euclidean distance, p=l represents the "city 
block distance", and for lar_ge values of P. the distance is exclusively determined by the 
largest value of (xiKxj k). ff mi is consiaered to be the mean value of a distribution of 
points, then one can use the distance from any other point to mi as the probability that 
that point belongs to distribution i. The more one knows about the statistics of those 
distributions, the more specific the distance measure can be, see Fig. 1. 
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Fig. 1 Various representations of distributions around average positions. In 1) and 2 )  the 
distribution around each point is the same. In 3) the variance per dimension is the same, 
but differs per point, whereas in 4) also the variance per dimension differs. In 5) the axes 
of maximal variance no longer coincide with the original dimensions, indicating 
covariance. 
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The multidimensional probability density function defines the probability that vector x 
belongs to the i-th disnibution: 

[3] 

This function takes into account the (n x n) covariance manix Si of average position mi. 
The exponent of [3] represents the Mahalanobis distance between x and m: 

(x-m)T. S-1. (x-m) [4] 

For S equal to the identity manix, formula [ 4] reduces again to the Euclidean distance 
(O'Shaughnessy, 1986). The n-dimensional vector x could well represent the n filter 
levels of a vowel analyzed with a bank of n filters, or n reflection coefficients as a result 
of an n-th order LPC-analysis, or even n articulatory parameters. So far we have 
supposed that the n values resulting from a certain measurement are used 
straightforwardly, however, more often than not these data are processed in one or 
more of the following ways: 
- data transformations, such as from linear to dB level, or from linear to Bark frequency 

scale, or from prediction to cepstral coefficients, or from harmonic power 
spectrum to auditory model representation (Bladon and Lindblom, 1981; Seneff, 
1986); 

- data truncations, such as reduced cepstral coefficients; 
- data reduction, such as principal-components or discriminant analysis; 
- data weighting, such as weighted likelihood ratios, or band-pass liftered weighted 

cepstral coefficients. 
A next level of complexity arises when one has a temporal sequence of measurements, 
such as a formant or a pitch contour, or the trace of a word in n-space (Pols, 1971). 
There are no good automatic procedures ('t Hart, 1979) to stylize pitch contours, apart 
from median smoothing (Rabiner et al., 1975) and endpoint connection 
(O'Shaughnessy and Allen, 1983), which makes it also difficult to define the distance 
between two contours. In several of the projects of the Dutch SPIN program 'Analysis 
and synthesis of speech', much attention will be paid to formant tracking, stylization, 
and parameterization. Green et al. (1987) developed a form of stylization they called 
'Speech Sketch', which enables acoustic evidence and phonetic knowledge to be 
represented in similar ways, so that like can be compared with like. Computationally 
very different approaches, such as Hidden Markov Modelling (HMM), also require 
different distance menics. For a recent review, see Juang and Rabiner (1985). 

3. PERCEPTUALLY-ORIENTED DISTANCE MEASURES 

Klatt (1982) did a very interesting experiment to study systematically the effect of 
various signal modifications upon the perceived distance towards a reference signal: a 
300-ms, stationary, harmonic, five-formant, signal sounding like /a/. Altogether 66 
different signals, acoustically similar to /a/, were generated by adding together 
sinusoidal harmonics of the appropriate frequencies, amplitudes, and phases. Small 
changes to either formant frequencies, formant bandwidths, spectral tilt, and filtering 
passband or stopband were introduced. In a paired comparison task, with the reference 
stimulus always as one of the pair, subjects had to judge the distance on a 10-point 
scale. The data were normalized such that the total responses from each subject had 
equal mean and variance. The subjects were asked to judge the pJwnetic distance 
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Table I. Average psychophysical and phonetic distances to a reference signal /a/, for the 
largest changes in each of the 16 conditions. From Klatt (1982). 

Condition psychophysical 

1. high-pass filtered at 400 Hz 8.3 
2. spectral tilt: +4, -4 dB/oct 8.1 
3. random phase 7.9 
4. low-pass filtered at 2500 Hz 7.6 
5. Fl & F2: +10, -10% 6.6 
6. F2: +10, -10% 5.6 
7. spectral tilt: +4, -4 dB/kHz 5.2 
8. Bl & B2 & B3 & B4 & B5: +100, -50% 5.0 
9. Fl: +10, -10% 4.3 

10. notch filtering: 800-1180 Hz 4.3 
11. F3: +10, -10% 3.3 
12. overall amplitude: +3, -3 dB 3.0 
13. Bl: +100, -50% 2.6 
14. notch filtering: 1370-2520 Hz 2.5 
15. B3: +100, -50% 1.8 
16. B2: + 100, -50% 1.4 

phonetic 

0.3 
1.3 
1.1 
3.0 
8.3 
7.2 
0.7 
3.0 
5.4 
3.2 
0.6 
0.8 
2.8 
0.8 
0.3 
0.7 

between stimuli, ignoring as best as they could any changes that were associated with a 
change in 'speaker or recording conditions'. In an earlier experiment Carlson, 
Granstrom, and Klatt (1979) had used similar stimuli to judge the psychophysical 
distance, and in 1976 Carlson and Granstrom had already studied the discriminability 
of spectral slope changes in several synthetic vowels. In Table I the major results for 
the Klatt (1982) experiment are summarized, by giving the average responses to the 
largest (positive and negative) changes in each condition. As can be seen there are large 
differences between the two types of judgment. Only those conditions including 
formant frequency changes (cond. 5, 6, and 9) induce large changes in phonetic 
distance. Filtering and spectral tilt conditions (1, 2, 4, and 7) produce substantial 
spectral changes (and large psychophysical distance scores), but are apparently ignored 
when making phonetic judgments. The large distance for random phase (cond. 3) is 
somewhat surprising in the light of results found by Plomp and Steeneken (1969). 
Klatt found no indication for the Chistovich et al. (1979) claim that listeners perform 
spectral smoothing over about three critical bands prior to matching the stimuli. Klatt 
repeated the experiments for stimuli resembling the vowel /ae/ and found the same 
strong effect of formant frequency changes upon phonetic quality. However, he also 
admits that humans most probably do not detect and label formant peaks when making 
phonetic judgments, since they generally make only small misperceptions, whereas 
machines relying on formant extraction make gross errors whenever a formant is 
missed or a spurious formant added. So, Klatt tries to define a phonetic distance that 
does not include a formant peak labeling step.What is called by Klatt the "Plomp 
metric" [area between two critical band spectra; see Plomp (1970), but also Klein et al. 
(1970) and Pols et al. (1969)] seems to be a good first candidate for that. However, 
this might be more a psychophysical than a phonetic distance. According to Klatt the 
ideal phonetic distance "should attend to peak locations, but be insensitive to relative 
peak heights and to spectral details in the valleys between peaks". He defines a metric 
(see Fig. 2) based on spectral slope differences near the peaks in the critical-band 
spectra which correlates very well (0.93) with his perceptual data of Table I. For this 
optimal fit the constants had the following values: kE = 0 (a neglect of overall level 
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differences), kLMAX = 1 and kGMAX = 20 (for units in dB x 10) indicating a large 

weight to the largest (global) peak. Nocerino et al. (1985) apllied the same measure in 
his comparative tests (see also Table II) but achieved best results with kE = 0 and 
kLMAX = kaMAX = 00, which implies an unweighted slope difference. More recently, 
Klatt ( 1986) was again studying metrics based on frequency locations of spectral 
peaks, including alternative spectral representations for disappearing peaks. Bladon and 
Lindblom (1981) applied auditory modeling in an attempt to improve the 
correspondence between spectral distance and vowel quality differences by using data 
of subjects who judged the similarity between pairs of stimuli on a 5-points scale. 

dB 

global peak 

local peak 

local slope: 

S.= L. 1- L. I I+ I 

- - - - -, 6 lmax (i) 
L. I L. � --- --1 --:--1+ - -- local peak I I 

I I 
I I 
I I 
I I 

i i+1 n filters 

WEIGHTED SPECTRAL DISTANCE MEASURE 

n-1 
d1,2 = kE. JE1-E2J + 2: ks(i). [ S1(i) - S2(i) J 2 

i=1 

kE weights the absolute energy difference JE1-E2J 

ks(i) weights the actual slope difference according 
to local and global peaks 

ks(i) = [ ks1 (i) + ks2(i) JI 2 

kl.MAX kGMAX 
ks1 (i) = [ ---------------------- J • [ -::------------------ J 

kLMAX + t:..LMAX(i) kGMAX + t:..GMAX(i) 

Fig. 2 Representation of the weighted spectral distance measure, as defined by Klatt 
(1982). 

4. PHYSICALLY-ORIENTED DISTANCE MEASURES 

Especially in speech recognition research, a great many different distance or distortion 
measures have been studied. Since linear predictive coding nowadays is so popular, 
most measures are based on this approach. The differences have, among other things, 
to do with using autocorrelation coefficients or cepstral coefficients, using linear or 
Bark-type frequency scales, apply weighting functions in various domains (e.g. 
bandpass liftering, Juang et al., 1987), stressing peaks, or making the measure 
symmetrical. Table II gives an overview of a number of them. It is rather difficult to 
compare performance of these measures over different studies since the conditions are 
never the same and there might be substantial interaction with: 

- speakers (one or many, male or female) 
- vocabulary (vowels, digits, alphadigits) 
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- input bandwidth (wide band vs. telephone bandwidth) 
- acoustic environment 
- front end (LPC and its order, filterbank and frequency spacing) 
- level and gain (full or local normalization) 
- training 
- dynamic time warping 
- reference set (one representative, clusters, vector quantization) 
- recognition procedure (probability, k-nearest neighbour) 
- accept/reject threshold 

It is for this reason that in comparative studies, such as those of Mermelstein (1976), 
Gray (1976), Rabiner and Soong (1985), Nocerino et al. (1985), and Hanson and 
Wakita (1987) the above-mentioned conditions are kept as constant as possible. 

Table II. List of a number of distance measures frequently used in speech analysis and 
recognition. The orders indicated are those found in two comparative studies. 

Euclidean spectral distance 
(Plomp, 1970) 

rms log spectral distance 
(Gray and Markel, 1976) 

(truncated) cepstral distance 
(Gray and Markel, 1976) 

likelihood ratio (Itakura-Saito distance) 
(Itakura, 197 5) 

cosh measure 
(Gray and Markel, 1976) 

maximum likelihood 
(Itakura, 197 5) 

log likelihood ratio (Itakura distance) 
(Itakura, 1975) 

(truncated) weighted likelihood ratio 
(Shikano and Sugiyama, 1982) 

weighted slope metric 
(Klatt, 1982) 

likelihood ratio + norm. temporal energy 
(Nocerino et al., 1985) 

(Bark-scale frequency-) warped cepstrum 
(Nocerino et al., 1985) 

warped weighted likelihood ratio 
(Nocerino et al., 1985) 

weighted cepstral distance 
(Tohkura, 1986) 

BP-liftered weighted cepstral distance 
(Rabiner and Soong, 1985) 

G&Ml Noc.2 

x 

x 6 

x 4 

x 

8 

2/3 

5 

2/3 

1 

7 

9 

R&S3 

4 

3 

5 

2 

1 

1 Gray and Markel (1976): theoretical and experimental discussion. 
2 Nocerino et al. (1985): LPC-based, alpha-digit vocabulary, 2 male, 2 female, 5-7 x training, 10 x 
test, telephone bandwidth. 
3 Rabiner and Soong (1985): 10 vowels, 4 male, 3 female, 5 x training, 5 x test, single frame, vector 
quantization (code-book size 1-8, in this table: 1). 
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Just as Klatt (1982) gave his opinion about the ideal phonetic distance, he also specified 
needs for metrics to work best in word recognition systems (Klatt, 1986): 
(1) provide a uniform scoring algorithm, such as probability, in order to compare 

disparate events; 
(2) respond in a monotonically increasing way to phonetically increasing distances; and 
(3) ignore phonetically irrelevant acoustic details, to the extent that this is possible. 
This leads to discussions about consistent feature extraction, invariant features, relative 
amplitude or slope metrics, and ways to accumulate distance over time. He concludes 
by saying that "no matter what metric is used, distance scores for phonetically similar 
spectra are usually too big, while those for very different spectra are not big enough". 

5. CONCLUSIONS 

It will be clear from the above discussion that the best distance measure cannot be 
defined. Its definition strongly depends on the application field (e.g. coding, 
recognition, perceptual similarity), on the descriptive parameters (e.g. critical-band 
spectra, cepstral coefficients, formant contour), on the signals under consideration (e.g. 
stationary vowels, alphadigits), on the type of similarity (e.g. psychophysic, phonetic), 
and probably many more. However, present literature has emphasized a number of 
important aspects, which should allow for a definition most appropriate for its needs. 
This is certainly much easier for stationary signals than for time sequences, whereas 
also the perceptual relevance of most measures is still far from optimal. 
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