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1. INTRODUCTION 

In a research project on the spectral differences between utterances spoken with 
different speaking rates the need arose to measure the velocity of formant movements in 
running speech. A method for the automatic measuring of formant velocities is 
developed here. 
With natural speech it is often very difficult to measure spectral changes in a speech 
signal. The spectrum of a constant or slowly changing signal can be determined almost 
to the theoretical limits. The measurements of a fastly changing signal, however, suffer 
from a lack of theoretical understanding and comprehensible representation. The central 
question is which changes are to be measured on a given set of spectra, measured on 
different points in time. Even the status of a spectrum, measured on a changing signal, 
is often unclear due to the implicit assumption of stationarity that underlies most 
spectral representations. 
Interest in the spectral changes of speech signals is most often concentrated on the 
behaviour of spectral peaks. There are several ways to measure and represent spectral 
peaks. 
One possibility is to transform the speech waveform into a spectrum, essentially 
making some type of time representation of bandpass filter outputs (this holds for 
normal Fourier Transforms). The problem is to identify peaks and follow their course 
in time and frequency. This is no trivial matter because it is difficult to decide what is a 
peak and what is not and which parts of the spectrum are instances of the same peak at 
different times. 
Another possibility is to formulate a model of human speech production and measure 
the changes in the parameters of this model that affect the spectral contents of the 
speech signal. This last approach is followed in this paper with the use of Linear 
Predictive Coding (LPC). This LPC analysis can encode the spectral peaks of the 
speech signal in a fixed number of variable, second order, bandpass filters. The 
spectral parameters of interest are the centre frequency and the bandwidth of each 
spectral peak encoded this way. Here a method will be described for measuring spectral 
changes as used to study the course in time of the centre frequency. For this kind of 
study all spectral peaks have to be defined at all times. In normal LPC analysis, with 
the Levinson algorithm, sometimes a peak is "lost". To prevent this disturbance, a 
different algorithm is used here for the LPC analysis, the so called Splitt-Levinson 
algorithm. This algorithm was implemented by L. Willems (L.F.Willems, Robust 
formant analysis, IPO Annual Progress Report, 21, 1986, pp. 34-40). 
Choosing an LPC representation has some advantages over pure spectral approaches. It 
is possible to manipulate all parameters of an LPC analysis and still resynthesize 
recognizable speech. Small changes in the parameters result in small changes in the 
resynthesized speech. In this way it is possible to test for clues for speech recognition 
or speech quality by changing the relevant parameters and, the other way around, to 
hear whether a change in parameters removes the quality of interest. 
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The spectral peaks that result from LPC analysis are often called formants. This is 
because the production model that forms the root of this approach, tries to model the 
effects of resonances in the speech organs. These resonances are, by definition, 
formants. The fit between the model and reality is, however, not good enough to 
ensure a perfect fit between the LPC spectral peaks and the formants. Sometimes there 
is a discrepancy between the measured peaks and the heard formants. Resynthesized 
speech however, mostly is of acceptable quality. In spite of the imperfect fit, these 
spectral peaks will be called formants hereafter. 

2. MODELLING FORMANT TRACKS 

If the object of measurement is to detemine the spectral change, i.e. the sp�ctral 
velocity, then it is necessary to perform differentiations on the spectral data. 
Differentiation is an operation that is very sensitive to random measurement errors or 
noise. It amplifies those errors and noise in such a way that even small, local errors can 
completely corrupt velocity measurements. To deal with this phenomenon it is 
necessary to remove, at least part of, the noise from the data. To succesfully separate 
the desired signal and the noise, it is necessary to develop a model of the signal and the 
noise. If a good model for the speech production would have been available that could 
accurately describe the course of formants, the problem could be solved without major 
problems. But since such a model is not available yet, it is necessary to develop an 
accurate description of the signal without much reference to production. 
It is very often possible to approximate a signal of unknown composition, a posteriori, 
to any desired accuracy by constructing a sum of standard functions. The remaining 
discrepancy between data and description is treated as noise and removed, only the 
modelled part is kept. It is important to choose the right class of functions to model the 
signal. An inappropriate model function will lead to a disturbed signal. Functions that 
can be made orthogonal should be prefered. 
Choosing functions for modelling is always a guess. The guess made here is that an 
LPC formant track, f(t), on a given interval [t0,t1> can be modelled a posteriori with 
any desired precision with a polynomial function that has the form: 

For any maximal given order J of the polynomials 

J J . H (t) = L a··tl 
. 0 J ]= 

( 1) 

(2) 

is chosen such that it is the best approximation of f(t) for this order of polynomials on 
this interval. A better way to define HI(t) is to use a set of orthogonal polynomials like 
the (shifted) Legendre polynomials, especially if J � 2. Using a set of orthogonal 
functions has great methodological and computational advantages. A short description 
of shifted Legendre polynomials is given in Appendix A. 
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After the calculations of HJ (t) the original formant track is replaced by 

f(t) = Hl(t) + t:(t) (3) 

in which t:(t) is an error term. For high orders of J it will be difficult to determine the 
best intervals [ti,ti+l> to fit Hl(t) on f(t). The order of the model function should 
therefore be as low as possible. For measuring formant slopes (=velocity) an order of 1 
will do, for measuring formant acceleration an order of 2 is necessary. In the 
discussion below an order of 1 will suffice, the order indication of the model functions 
Hl(t) will be omitted hereafter. 
For this first order polynomial model to make a good fit it is important to choose 
appropriate intervals. The formant track is modelled as a succession of simple straight 
line segments. If the boundaries between succesive line segments are chosen wrong, 
the resulting modelled track will have hardly any resemblance to the or!ginally 
measured formant track. In this model therefore the original formant track f(t) is divided 
in intervals Ti= [ti,ti+l> that do not overlap. In every interval Ti the formant is 
modelled with: 

(4) 

t E Ti= [ti,ti+1> 
Hj(t): a straight line on Ti 
q(t) : the error term on Ti, defined by q(t) = f(t) - Hi(t) 

Next t:i(t) can be modelled by a Gaussian distributed noise term ei(t) with expected 
value E(ei(t)) = 0 and variance E(ei(t)2) = a}. Hi(t) becomes the straight line that 
minimizes cr?. In this model the value of the formant at time t E Ti is Hi(t) and the 
slope is ai. 
The assumption that t:i(t) can be modelled by a Gaussian distributed noise term is made 
for convenience. It is possible to use other distributions but calculating the best fit 
becomes time consuming and for the simple example described here there is no point in 
using any other distribution. The minimizing criterion for the best fitting function can 
be altered to emphasize the errors in special parts of the interval, e.g. the centre of the 
interval, by using a weighting function. 

The preceding argument can be summarized as follows: 
With LPC analysis it is possible to extract formant frequencies from a speech signal. 
These formants form tracks in time. Each of these tracks, represented by the function 
f(t), can be modelled by dividing the track in non-overlapping intervals Ti and 
replacing the measured track f(t) with: 

t E Ti= [ti,ti+1> 
Hi(t): a straight line on Ti 
ej(t) : a Gaussian noise term on Ti, defined by 

E(ei(t)) = 0 
E(ei(t)2) = cri2 (i.e. independent of t) 

In equation 5 the best guess for Hi(t) is the linear regression line on Ti. 
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3. SEGMENTATION 

In the preceding model, segmenting the tracks in independent intervals is crucial for a 
good fit of the model on the tracks. Such intervals are called line segments here. A line 
segment is defined as the largest interval in which the formant track can be modelled by 
a straight line according to equation 5. The segmentation can be done in an automatic 
way if there is a smallest interval length 't for which there is no smaller line segment. If 
there is such a smallest length of a line segment, then it is possible to find all the 
boundaries between the segments. This is done by deciding whether a test segment of 
the track ( called Ao ) with a length smaller than or equal to the smallest interval length 
(i.e. IAol � 't) contains a boundary between line segments. If it is concluded that the test 
segment does contain a boundary between line segments, then the best point to place 
this boundary can be found. This test segment is shifted over the track until all possible 
boundaries are found. 
The decision whether or not the test se�ment contains a boundary between line 
segments is made by trying to find a subdivision of .0.o in two subsegments A1 and A1 
that have a lower expected value for the remaining variance of their regression lines 
(called E(v12) and E(v22)) than the undivided test segment (called E(v02)). If there is no 
boundary present in .0.o, that is, .0.o is completely confined in a segment (Ti) of the track 
with only one straight line segment, then all subdivisions of Ao will have the same 
expected values for the remaining variance of there regression lines as Ao itself. Or, for 
all subdivisions A1 and A1 of Ao lying in segment Ti : 

(6) 

with: 
E(v02), E(v12), E(v22):  the expected values of the remaining variance of the 

regression lines in the segments .0.o, A1 and A1 
v02; v12 and v22: the estimated or calculated values of the remaining variance of 

the regression lines in the segments Ao, A1 and A1 
cri2 : the variance of the model noise term in segment Ti (cf. equation 5) 

If, however, the test segment Ao contains a boundary between two segments, Ti and 
Ti+1' with different model lines (not only different noise terms), then there exists at 
least one subdivision of Ao in two segments A1 and A1 that has a lower expected value 
of the remaining variance than the test segment itself. Or 

(7) 

with: 1.0.ol = IA 11 + IA2I the lengths of the segments 

The subdivision with the lowest remaining variance, IA1l·E(v12) + IA2l·E(v22), has 
expected values of the remaining variance of the regression lines that are equal to the 
variances of the noise terms in Ti and Ti+l· That is: 

and 

E(v12) = cri2 
E(v22) = CTi+l2 

IA1l·E(v12) + IA21·E(v22) = IA11·cri2 + IA2l·cri+l2 
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An example of a formant track f(t) and the calculated values of the parameters of 
equation 10 on a test segment t.o (see text for explanation). The division used is 
indicated by a dashed line and is the one with the highest value of qi2 . 
.10 is a test segment with n1 +n2=100 points . .11 and .12 are the two neighbouring 
sub-segments of t.o. each containing n 1 =n2=50 points. 
Ho, H 1 and H2 are the regression lines on these three segments. 
It can be seen that the test segment, t.o, is chosen too large. Three line segments 
are actual present inside the test segment .10, which results in a total of two 

boundaries. But inside a test segment only one boundary between line segments 
can be found with the method described here. As is shown in this figure. 

These equations are valid with a continuous formant track and an unlimited number of 
realisations of the SAME formant track. If only one realisation of the track is available 
and only a limited number of measuring points in a segment are known then it is 
necessary to work with the estimated values alone. Equation 7 will become: 

(9) 

with: no = n 1 + n1 the number of measured points in the segments Lio, 61 and 
62 

If a subdivision is found for which this ineq_uality holds, then there is a segment 
boundary in 60. The best guess for the posit10n of this boundary is the point that 
separates the subsegments 61 and62 with the lowest value of n1·v12 + n2·v22. If this 
value is not equal to zero then take this subdivision and rewrite equation 9 to: 

(10) 

cp2 Is the largest value possible for the quotient on this test segment (see fig. 1). If both 
sides of equation 9 are equal to zero, there is no boundary in the test segment. If only 
the right hand side of eguation 9 is equal to zero, then there is a boundary in the test 
segment. Because of defmition and the fact that v02 is calculated from the same points 
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as n 1·v12+n2·v22 is calculated, <p cannot be smaller than zero. It is however easily seen 
that <p > 0 is possible with no boundary present.This erroneous boundary detection 
results from stochastic errors in the estimators v02 ,  v12 and v22. For this reason 
equation 10 should be changed to: 

cp2 > 82 (11) 

for detection of a boundary. o Is a dimensionless number which gives a threshold for 
detection in numbers of standard deviations difference between (n1+n2)·v02 and the 
smallest possible n1·v12+n2·v22 value in the test segment. 
Because there are different numbers of points involved in calculating the different 
estimated variances, it is important to use unbiased estimators. Here the following 
unbiased estimators are used: 

and 

nl+n2 vo2 = { :E (f(ti) - Ho(ti))2 } I {n1+nz-2 }  
i=l 

nl n2 v122 =  { :E(f(ti) - H1(ti))2 +:E(f(tj)-H2(tj))2 } I { n1+n2-4 } 
i=l j=l 

with: v122 = { n1·v12+n2·v22 } I { nl+n2 } 
ti E �l 
t· E �2 fro(t), H1 (t) and H2(t) the regression lines in the segments�, �1 and �2 

In this notation cp2 will become: 

for boundary detection. 

(12) 

(13) 

Two assumptions are critical to the fit of the model track on the formant track. First 
there is no more than one segment boundary in any part of the track with a length :::; 't, 
with 't being defined as some minimal length greater than or equal to the length of the 
test segment. Second the formant tracks consist of straight line segments with additive 
Gaussian noise. If the first assumption does not hold and a test segment contains two 
or more segment boundaries, then the behaviour of cp2 will become dependent on where 
the boundaries are inside the test segment. The detection and assignment of boundaries 
between line segments becomes very irregular. If the second assumption does not hold 
and the formant tracks are curved, then boundaries will be placed in such a way that the 
regression lines will fit the curve with more or less constant variance. 

In an actual imJ?lementation of the described boundary detector one shifts the test 
segment one pomt at a time and accepts only subdivisions with lowest v122 which 
divide the test segment in two parts of equal length. This secures the use of the most 
accurate estimation of v122 for boundary detection. Every boundary is shifted in the 
centre of the test segment only once and so can be detected only once. 
To calculate two regression lines in a test segment, this segment must contain at least 6 
points (three points for each regression line). This constraint determines the minimal 
time resolution needed for the formant measurements. 

72 



4. SEGMENTATION OF SEVERAL TRACKS SIMULTANEOUSLY 

If more than one formant track is used simultaneously to detect synchronous segment 
boundaries, a total v02 and a total v122 are calculated br summing the individual v02 
values for all tracks and by summing the individual v 12 values for every subdivision 
of the test segment for all tracks. The equation (13) for boundary detection will not 
change, but total values will be used for the estimated variances instead of individual 
values. This is the equivalent of treating the frequency values of different tracks as 
independent dimensions and stating that each segment contains a multidimensional 
straight line. 

5. OTHER PARAMETERS FOR DETECTING BOUNDARIES 

The method to detect boundaries in formant tracks described above is purely statistical. 
It is possible to use other clues to find those segment boundaries. For example, a 
change in the voicing of speech (voiced to unvoiced or the reverse) signifies an 
important change in speech that is likely to have an important effect on formant tracks. 
It is also possible to use threshold values for the energy of the speech signal or other 
threshold values to find important changes in the signal. Of all possible parameters that 
could be used to detect segment boundaries, only the voicing transition is currently 
implemented, complementary to the formant tracks themselves, of course. 

6. COMPARING STRAIGHT LINES 

After the segmentation, the formant track is divided into a large number of segments. 
The regression lines of many of these segments will not differ markedly from that of 
their neighbours. It is possible to remove a significant number of those segment 
boundaries and merge segments by comparing the regression lines of neighbouring 
segments. 
Comparing straight lines is done by calculating a distance between lines in a shared 
interval. The distance of the straight lines in two neighbouring segments Ti and Ti+ 1 is 
defined here as the Root Mean Square difference between the two lines in the total 
interval (Tiu Ti+l). The difference between the lines is measured perpendicular to 
some standard line. This standard line can be the time axis, a regression line through 
the combined interval, the bisector line that divides the arc between the lines evenly in 
two, or it can be some other line. Using the bisector line as the standard line for 
distance measurement results in the shortest distance between lines and is currently 
implemented (see appendix B for the actual calculation of the distance). 
The mean line distance, defined as above, depends on the total interval length and tends 
to infinite large values if the interval length becomes infinite. So this distance is not a 
quality of the two lines but of the two lines in an interval and depends on the interval. 
Long intervals must resemble each other more than short intervals in order to be merged 
into one interval. This distance can be calculated over several formants simultaneously 
by treating each formant as an independent dimension and the lines as multidimensional 
straight lines. The total squared distance is calculated by summing the individual 
squared distances. 
Using the line distance to remove unwanted segment boundaries gives the opportunity 
to segment with high sensitivity and to remove excess boundaries afterwards. This is 
important because while the segmentation stage has only a narrow, local, scope, the 
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comparing stage has a scope that can be infinite in principle. A local scope is noise 
sensitive and error prone. 

7. CONCLUSIONS 

An implementation of the theory discribed above was made on a µVAX II 
mini-computer. Some minor changes were introduced. First, the condition that there 
should be no more than ONE segment boundary in the test segment was relaxed. 
Instead of this strict condition, only a minimal distance between segment borders was 
demanded. This proved to work well. Second, it appeared that the condition of dividing 
the test segment into two equal sized sub-segments to signal a segment boundary 
sufficed to select only few excess boundaries. There was no need for an additional 
threshold for boundary detection (82 in equation 1 1). When a minimal RMS line 
distance is used to decide whether a boundary separates distinct parts of the formant 
track, then it is possible to eliminate these excess segment boundaries as well as some 
others that do not separate distinct parts of the formant track. 
An example formant track was segmented and modelled with this program. The results 
are displayed in fig. 2a and 2b. The modelled track of fig. 2b is used to measure the 
slope of the original track. 
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Fig. 2a: The results of a segmentation of the track of the first formant, 

voicing is indicated by a black line below the frame. 

Testinterval: 20 points, minimal distance between borders: 4 points, 
threshold for detection of a border: none, borders on voicing change, 
minimal RMS line distance: 30 Hz. 

i .0 The name "ADOLF SAX", first formant track modelled with straight lines 654.0 ms 

Fig. 2b: The above formant track modelled with straight lines. 

Remaining standard deviation: 22 Hz. 

75 



Appendix A: Shifted Legendre polynomials 

(This appendix is adapted from: M.Abramowitz, I.A.Stegun, Handbook of mathematical functions, 
Dover publications 19659, National Bureau of Standards 196410, The section on orthogonal functions) 

A Legendre polynomial of order J is a function defined for te [-1,1] or t e [O, 1] of the 
form: 

The functions defined on t E [0,1] are called shifted Legendre polynomials. 
Shifted Legendre polynomials are orthogonal polynomials. That is, they obey the 
relation: 

1 
f L1(t)-L1(t) dt = 0 if l;t:J 

0 

and for the Shifted Legendre polynomials: h1 = l/{2·J+l } 

The first four polynomial functions are: 

Lo(t) = 1 
Ll(t) = 2·t - 1 
L1(t) = 6·t2 - 6·t + 1 
L3(t) =€W·t3 - 60·t2 + 2 4 ·t - 2)/z 

If the interval is t e [0,k] then the first four funtions change into: 

Lo(t) = 1 
Ll(t) = 2·t/k-1 
L2(t) = 6·t2 / k2 - 6·t I k + 1 
L3(t) =@O·t3 / k3 - 60·t2 / k2 + 2 4 ·t I k - 2)/.z 

and h1 = k/ {2·J+l } 

These functions can be translated to another interval, t'e [k1,ki] , by substituting 
t=t'-k1 and k=k2-k1. 
Any continuous function, f(t), that exists and is finite in every point of [O,k] can be 
approximated by a sum of these polynomials 

00 

f(t) = 2: A··L·(t) 
. 0 J J 

J
= 
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Because of orthogonality it is possible to calculate the factors Aj independent of one 
another with the following relation: 

k 

Aj = [I f(t)·Lj(t) dt ] I hj 
0 

With this relation it is possible to calculate the factors Aj in a very efficient way. 

Any straight line on the interval [0,k] can be written as: 

f(t) = a·t + b 
=Ao +  A1·L1(t) 

t E (0,k) 
and: 
Ao =  b+a·k/2 
Ai =a·k/2 

Appendix B: Calculation of line distance 

Define two straight lines: 
g(t) = a·t + b 
h(t) = C·t + d 

0 

h(t) = c·t + d 

t -> T 

Fig. 2: Two straight lines, g(t) and h(t), with an angle of yin between. 

The distance between these two lines is defined here in the interval [ O,T >.Any other 
interval can be transformed to this interval easily. The distance is defined perpendicular 
to the bisector line. The bisector line between g(t) and h(t), i.e. the line that divides the 
angle y into two equal halves, is calculated as follows. 

Define the bisector line as: 

b(t) = e·t + f 
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The angle between g(t) and h(t) is called y and is: 

y =arctangent ( (a-c) I (1 +a·c) ) 

define: 

f' =tangent ( y I 2 )  

then the parameters of the bisector line become: 

e = ( c+f') I (1-<>D 
f = { ( 1  +c·e)·b + (1 +a·e)·d } I { 2 + (c+a)·e } 

To calculate the distance perpendicular to b(t) all lines are rotated and translated such 
that b(t) lies on the horizontal axis. In this reference frame the new lines g'(t) and h'(t) 
are: 

and 

g'(t) = a'·t + b' 
h'(t) = c'·t + d' 

a' = { a-e } I { 1 +a ·e } 
b' = { b--f } · :_j [ { a'2+ 1 } / { a2+ 1 } ] 

c' = { c-e } I ( 1 +c·e } 
d' = { d-f } · :_j [ { c•2+ 1 } / ( c2+ 1 } ] 

The distance D is defined in this reference frame as: 

T 
D2 = [I ( g'(t)-h'(t) }2 dt ] I T 

0 

This can be simplified to: 

D2 = ( a'-c' )2 . T2 I 3 + ( a'-c' ) · ( b'-d') · T + ( b'-d' )2 

The mean distance is D. 
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