
ROBUST LINEAR PREDICTION ANALYSIS OF VOWELS 

David J.M. Weenink 

1. INTRODUCTION 

Many a time we want a description of vowels in terms of formants and bandwidths. 
Determining these parameters is a tedious matter, especially when these vowels are 
uttered by women and children. Linear prediction analysis seems to be the best way to 
estimate these parameters. However, formant and bandwidth estimations often fail on 
these voices, either formants are completely missed or not positioned well. A new 
algorithm which should obtain better estimates was suggested by Lee (1987). In order 
to get more insight in the way it will behave on natural speech, we tested the algorithm 
on some artificially generated signals. 

2. AUTOREGRESSIVE MODELLING OF SPEECH 

Linear prediction has been a widely employed method in the past decades in the 
modeling of the speech signal. At the core of linear prediction lies the assumption that a 
speech sample Sn can be considered as a linear combination of past samples and a 
certain input Un. 

p 

Sn=-L akSn-k + Un (1) 
k=l 

Given a particular signal { s1 , ... ,SN} the problem is to determine the predictor 
coefficients ak in some manner. 
In speech the source signal un is unknown and some model for it has to be assumed. 
This means that the signal Sn can only be estimated from a linear summation of past 
samples. Let this approximation of Sn be sn', where 

p 

sn'=-L aksn-k k=l 
Then the error between Sn and its predicted value sn' is given by 

p 

en=Sn-sn'=sn+L aksn-k 
k=l 

This equation can be rewritten as 

p 

Sn=-L aksn-k + en 
k=l 

(2) 

and we see that the only input signal Un that will result in the signal Sn as output, is that 
where un=en. That is, the error signal is an estimation of the source signal. 
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In standard linear prediction a solution for the ak is determined by minimizing a function 
p(en) of the error. 

minimize L p(en), where p(en)=en2 (3) 

When this function is used we call this minimalization Least Squares (LS) 
minimalization. This rninimalization is optimal when the errors en are normally 
distributed, i.e. when the error signal is gaussian white noise, and it is equivalent to 
minimizing the variance of the error signal (source signal). We can solve this LS 
problem with either the autocorrelation or the covariance method (Makhoul, 1975). 
This method of least squares has been used for many years. Nevertheless, it is well 
known that outliers have an uncomfortably large influence on the resulting LS 
estimators. For voiced speech the source is of a quasi-periodic nature with spiky 
excitations at glottal opening and closing which interact with the filter A(z). This type of 
interaction results in systematic errors in LPC- derived formants and bandwidths 
estimates and becomes more severe as the fundamental frequency is raised (Atal, 1975). 
One solution to this problem that has been suggested is to restrict the analysis interval to 
the region of glottal closure. During the closed glottis interval, the speech wave consists 
of free decaying oscillations whose frequencies and decay rates are not being influenced 
by the glottal pulse. Yet, when we only have the speech signal itself at our disposition, 
such an interval of appropriate length is difficult to locate in natural speech, especially in 
speech uttered by females and children where the pitch is high. And even if such an 
interval can be defined, stability problems can arise because the number of samples 
available for closed glottis analysis is limited for signals with a short pitch period. 
A great deal of these problems can be overcome with a better model for the source 
function, or, equivalently, with a better error minimalization criterium, which reduces 
the influence of outliers. Accordingly, robust procedures have been created to modify 
the LS scheme so to deweight the influence of outliers on the final estimation (Lee, 
1987; Miyoshi et al., 1987). 

3. ROBUST ESTIMATION 

We are faced with the following problem: We have a sequence of independent and 
identically distributed errors { e1, . . .  ,eN} with distribution function G and we are 
looking for a function p(en) which minimizes I, p(en)· The function p(en) which has 
been widely used is p(en)=en2 and this function is optimal when G is a normal 
distribution, which means that the minimalization we perform is a least squares 
minimalization. What happens to the estimators when the distribution of { ei. ... ,eN} is 
not strictly normal but is contaminated by some amount e with an unknown distribution 
H with a much bigger variance? We can imagine that in this case our parameters are 
poorly estimated. Let us therefore firstly restrict our attention to a distribution 
F= (1-e)<I> + eH, where <I> is the standard normal distribution, H is an unknown 
contaminating distribution and e is a known number 0::::; e ::::; 1. Under the 
assumption that H puts most of its weigth in the tails of <I> , Huber (1964) showed that 
the most robust function p(en) , i.e. least sensitive to outliers, which minimizes I, p(en) 
is: 

p(en)=l /2 en2 

p(en)=klenl - 1/2 k2 (4) 

The k, which depends on e, is the number of standard deviations of the standard 
normal distribution from whereon the influence of the contaminating distribution is 
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assumed. 
When we take the derivative of this p(en) and denote it by 'Jf(en), then 

(5) 

Then our minimalization problem can be stated by putting the derivative of p equal to 
zero: 

(6) 

In the above formulation scale S (standard deviation), location T (mean) and the amount 
of contamination E are known beforehand (S=l, T=O). Huber also showed how to 
proceed in those cases where we do not know the amount of contamination nor the scale 
of the normal distribution. First of all, equation (6) has to be modified to 

(7) 

to make it scale invariant. S is the most robust estimate for the scale and can be 
calculated in the following way: 
Choose beforehand a number k and determine S such that 

L: 'Jf2(en/S) = N�, with 

� = E<t> 'Jf2(x), 

(8) 

the expected value of '1'2 over the distribution <I>. The value of k hidden in equation (8) 
is not too critical, any value between 1 and 2 will do, so we choose k=l.5 since this 
value performs well in practice. The above equation can be solved in the following way: 
Let mi. m2 and m3 be the numbers of observations satisfying en s -kS, lenl < kS and 
en� kS respectively. We can then write equation (8) as 

(9) 

where the summation L:' is only over the observations m2. This can be used to compute 
S by iterations: Start with some initial value So and determine the numbers m1, m2 and 
m3. Compute a new S (S1) with formula (9). Determine new m1, m2 and m3 and 
compute S2. Repeat this scheme untill the numbers m1, m2and m3 do not change any 
more from one iteration to the following. 
The obtained value of S is the most robust estimate for the variance of a normal 
distribution with mean (T=O) and an unknown amount of contamination E. Equation 
(7), now with known S, can be used for obtaining a solution for the problem at hand, in 
our case auto regressive modeling. 

4. GENERALIZATION TO AUTOREGRESSIVE MODELING 

For the generalization of robust estimation to auto regressive modeling of the speech 
signal we will follow the scheme developed by Lee (1987). 
We assume that a time series { si. ... ,SN } is generated by an auto regressive model of 
order p. We can express the predictor residuals for any LP coefficient vector l! as 

81 



p 

enW=sn + L aksn-k• n=p+l, . . .  ,N (10) 
k=l 

The above formulation for minirnalization can be applied to solve for an estimate of the 
LP coefficients. An estimate for the LP coefficients is obtained by solving the following 
optimalization problem 

N 

minimize L p(eneill) (11) 
n=p+l 

For p(t) we take we take the above defined function with derivative 'tf(t). The 
corresponding system of estimating equations then becomes 

N 

L Sn-j'V(enU!)/S) =0 
n=p+l 

j=l, . . . ,p (12) 

S is the robust estimator of the scale parameter (the standard deviation) of the residuals. 
In general this system of equations is nonlinear and iterative methods are required to 
solve for the coefficients ak's. 
For solving the above equation we substitute 

From 'tf(X)= min[ k, max( x, -k )] it follows that the weigths Wn are: 

Wn = 1 
Wn = kS/ lenl 

for lenl < kS 
for len l � kS 

Equation (11) can now be written in matrix form as 

with solution f!. = -R-1£ 

where R is the weighted covariance matrix with elements 

N 

Rij = L Sn-iSn-jW'n 
n=p+l 

1 � i,j � p, 

(13) 

(14) 

(15) 

(16) 

and R-1 is its inverse. The weights w'n are computed based on the residuals obtained 
from a preliminary estimate fl:1 for the prediction coefficients. 

5. THE ALGORITHM 

The structural steps in the algorithm are displayed in figure 1 .  The iteration loop is 
entered with all weigths set equal to unity and the covariance matrix R is calculated (16). 
Next the coefficients ak are determined and used for the calculation of the error signal 
(10). From this error signal the scale S is determined via an iterative process and the 
weigths are calculated (14). These new weights w'n enter in the next iteration step for 
calculating the new covariance matrix. Convergence is reached when the following 
condition is fulfilled: Pi-l -Pi < et.Pi· The value for a. at this moment is 0.001 but can be 
made smaller. 
At the implementation stadium reached now, the algorithm is rather time consuming, 

82 



despite the fact that already some optimalizations have taken place: the algorithm for the 
calculation of the covariance matrix, responsible for 80% of the time consumption, was 
optimized by calculating the complete covariance matrix only once for the first iteration. 
In the next iteration steps only action is undertaken when a weight has changed. The 
amount of time saved depends of course on the number of iterations, the more iterations 
the more effective this method becomes (e.g. a saving factor 5 in computing time when 
the mean number of iterations is 7). 

w =1 

calculate R · 16 

15 

10 

calculate w (14 
no 

solution for a 

Fig.I. Flow chart of the robust linear prediction algorithm. 

6. TEST OF THE LINEAR PREDICTION ALGORITHM 

In order to get some insight in the meritus of the algorithm it was tested on some 
artificially generated signals, since this is the only way to know the exact values of all 
formants and bandwidths. Three different 4-formant vowels of 60 ms duration and 10 
kHz sample frequency were synthesized. Vowels /u/, /a/ and /ii were taken,being at the 
corners of the vowel triangle. Bandwidths were choosen 10% of the formant frequency 
values. Table I shows the formant frequencies and bandwidths of these vowels. 

Table I. Formant frequencies and bandwidths of the generated vowels, all values in Hz. 

vowel F1 
Ju/ 320 
la/ 800 
Ji/ 340 

32 
80 
34 

670 
1340 
2200 

67 
134 
220 
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2330 
2650 
2970 

233 
265 
297 

3500 
3500 
3500 

350 
350 
350 



1.0 

-1.0 

For each vowel besides the variation in formant frequencies and bandwidths two other 
variations were introduced, namely, variation in fundamental frequency and variation in 
source function. Each vowel was generated with 3 different fundamental frequencies, 
1 25, 225 and 325 Hz being approximately the mean fundamental frequencies for 
respectively male, female and children voices. 
Two different source functions were used, a spike function (delta pulse) and a 
polynomial source function according to Rosenberg (1971). In the Rosenberg source 
function the durations of glottal opening and closing times were chosen as 0.4 and 0.16 
of the duration of a pitch period. 

1 0 600 0 1 0 
1.0 ..L ..L ..L ...!. ..L ..L 

'-' '-' '-' '-' '-' '-' '-' '-' L...J '-' . '-' ... '-' '-' 

-1.0 
T T 

Fig. 2 The two source functions used. The left figure shows the polynomial Rosenberg 

function for the signals generated with a fundamental frequency of 225 Hz. Durations of glottal 

opening and closing times relative to the pitch period are respectively 0.40 and 0.16. 
The right figure shows the delta pulse function. Time (in sample numbers) is displayed on the 

horizontal axis and the amplitude on the vertical axis. -

...!. 
600 0 

A filter of the form 1-z- l is employed
· 
on the ge�erated vowel to get a better spectral 

roll-off. Figure 2 shows both source functions for a vowel with a pitch frequency of 
225 Hz. 
All the synthesized vowels were analyzed with the robust linear prediction algorithm. 
The results for the vowels with a puls-type excitation are summarized in table II. 
As we can see from this table, the estimations of the formant/bandwidths are excellent. 
The formant frequency estimations are generally within 0.5% of the true values. 
Bandwidths of the formants are somewhat less exact but deviate generally no more than 
4% (see also Golstein Brouwers, 1987). However, when the first formant lies 
approximately halfway between the first and the second harmonic of the fundamental 
frequency, the bandwidth estimation of this formant is not so well and estimated too 
wide: 17% for the /ii and 50% for /u/. The algorithm iterates much slower to the best 
estimation, than when the formant lies closer to one of the harmonics. 
We must note that the values obtained with this algoritm are significantly better than 
those obtained with the conventional linear prediction algorithm (table III). 
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Table II. Deviations of formant frequencies and bandwidths from the true values of the vowels 
generated with a puls source function. Robust analysis used. All values are in Hz. 

vowel Fo �l LIB1 �2 ilB2 �3 ilB3 �4 ilB4 
125 1 5 1 1 0 0 -1 2 

lu/ 225 4 16 0 1 0 2 -2 2 
325 4 4 3 -1 -1 -4 -3 14 
125 0 0 0 0 0 -1 0 0 

la/ 225 l 0 0 0 0 -1 0 2 
325 3 2 1 -3 -2 -2 -2 9 
125 0 2 0 0 0 0 0 2 

/ii 225 1 6 0 0 0 0 0 2 
325 l 0 0 -1 -1 0 -1 5 

Table III. Deviations of formant frequencies and bandwidths from the true values of the vowels 
generated with a puls source function. Conventional covariance analysis with order 10 used. All 

values are in Hz. 

vowel Fo �l LIB1 �2 ilB2 �3 ilB3 �4 ilB4 
125 137 243 7 180 -14 -44 -16 99 

lu/ 225 79 682 4 . -26 -31 -41 -26 207 
325 17 1 10 "33 20 -117 -185 343 
125 47 30 36 -30 -45 -36 -97 269 

la/ 225 88 77 40 52 -36 -27 -69 186 
325 65 190 3 -78 -23 -79 -49 231 
125 78 195 23 -57 -70 41 -90 100 

/ii 225 160 503 0 -32 -35 19 -36 67 
325 2 6 -10 -7 -35 113 -59 284 

More serious problems arise when we look at table IV and V, where the analysis results 
of the signals generated with the Rosenberg puls are displayed. We see that the exact 
correspondence between estimated parameters and system parameters has disappeared; 
the estimate has become worser. The effects noted above for the signals with a deltapuls 
as excitation are magnified. First of all, the formant frequency estimation errors have 
increased. The greatest relative error in frequency is 8% and it occurs for the first 
formant of the vowel Iii with fundamental frequency of 325 Hz. In general, the sign of 
the deviations in formant frequency is such, that the estimated frequency is close to the 
nearest harmonic of the fundamental frequency. Despite the worse estimations of 
formant frequencies, we can say, that the relative errors never exceed 8% and, that this 
case will only happen when the first formant and the fundamental frequency have 
approximately the same values. 
We now come to the critical point of the robust analysis: bandwidth estimation from 
signals generated with a speech like source function. Especially the bandwidth 
estimations are very inexact, whenever there is a low frequency first formant. Two 
cases occur: bandwidths are estimated too small whenever the first formant is close to 
the fundamental frequency, and bandwidths are estimated too big when the first formant 
frequency is halfway between the first and second harmonic of the fundamental. 
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Table IV. Deviations of formant frequencies and bandwidths from the true values of the vowels 
generated with a Rosenberg source function. All values are in Hz. 

vowel Fo Af'1 Afl1 Af'2 D.B2 Af'3 D.B3 Af'4 D.B4 
125 5 8 -10 7 -10 30 -8 193 

/u/ 225 -3 40 -11 -6 -12 -11 35 325 
325 8 -31 -1 -55 -39 90 14 625 
125 -6 8 -1 7 6 6 7 7 

/a/ 225 0 41 2 22 21 17 20 7 
325 -48 24 -4 -24 3 -7 6 7 
125 -13 5 6 5 9 -1 8 7 

/i/ 225 -6 42 21 21 18 -7 22 12 
325 -26 -24 6 28 12 8 14 15 

Table V. Deviations of formant frequencies and bandwidths from the true values of the vowels 
generated with a Rosenberg source function. Analysis with conventional covariance method of 
order 10. All values are in Hz. A * signals that the formant was not found. 

vowel Fo Af'1 Afl1 Af'2 D.B2 Af'3 D.B3 Af'4 D.B4 
125 -15 31 -30 2 -32 72 -44 449 

/U/ 225 21 85 4 -39 -25 64 22 359 
325 * * -2 -66 -85 96 168 900 
125 -29 30 3 4 8 18 10 13 

/a/ 225 1 96 3 -2 36 14 36 14 
325 -116 24 -13 -91 17 -29 50 57 
125 6 20 15 3 22 9 18 18 

/ii 225 43 92 39 18 18 -9 29 21 
325 * * 56 110 64 -27 79 109 

We rather expected the fit not to be optimal since our model did not correspond exactly 
to the situation: the assumption is that the source function has a big variance and this is 
true only for a part of the source function. This means that we cannot separate source 
and filter in the calculations, which results in poorer estimates. Looking at fig 3. where 
the error signals of the vowel /u/ are displayed we see that we do not get the correct 
(differentiated) Rosenberg pulse as the error signal. 
Notwithstanding these bad bandwidth estimations with a Rosenberg pulse, we believe 
that this new robust analysis will be of use in speech analysis and can be improved in 
some ways. First of all, for voiced speech we can make use of the fact that the outliers 
in the source function are localized and not randomly divided, and use this to deweigth 
samples just before and after these outliers. Another improvement could be, to use the 
coefficients as determined by the algorithm for formant frequency calculations, and to 
afterwards fit the bandwidths (Willems, 1986). 
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Fig. 3 In both columns from top to bottom respectively 25 ms segment form vowel /u/ with 

Fo=l25 Hz, the error signal from the-conventional linear prediction and the error signal from 

the robust algorithm. In the left column the /u/ has a Rosenberg excitation, in the right 
column a delta pulse excitation. 
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7. CONCLUSIONS 

The robust algorithm serves well for artificially generated signals when the excitation is 
a delta pulse. Excellent agreement between estimated and system parameters are 
obtained. When the excitation is choosen to be a smoother function, i.e. less delta 
pulselike, the estimations are not so well, especially bandwidths are often seriously 
underestimated when the first formant is close to the fundamental frequency. It is our 
belief that the algorithm can be upgraded to perform better in a real speech environment 
because the basic assumptions underlying the algorithm are more valid than the 
assumptions for conventional linear prediction. 
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