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1. IN1RODUCTION 

Human listeners have an amazing ability to recognize words in fluent speech. They can 
perform this task very fast and very efficiently, despite the fact that the speech they hear 
is continuous, highly variable, and often accompanied by some kind of noise. Several 
models of word recognition have been proposed such as the Logogen model (Morton, 
1982), the Search model (Forster, 1979), the Cohort model (Marslen-Wilson & Welsh, 
1978; Marslen-Wilson, 1987), TRACE (McClelland & Elman, 1986), and LAFS 
(Klatt, 1989). 
Recently a lot of progress has been made in the field of automatic speech recognition. 
Generally speaking, two competing strategies are used: knowledge-based strategies and 
strategies based on stochastic models. In knowledge-based approaches an attempt is 
made to integrate all our knowledge of speech in a recognition system (e.g. Zue, 1985; 
Cole et al., 1986). Stochastic models such as neural networks (e.g. McClelland & 

Elman, 1986) and hidden Markov models (e.g. Jelinek, 1985; Lee, 1989) use large 
amounts of training data to build up their own internal representation of speech units. 
Currently the stochastic models, in particular hidden Markov models, are far more 
successful in recognizing speech than the knowledge-based models. Nevertheless, 
some researchers (e.g. Fant, 1990) claim that the 'brute-force' stochastic models will 
be outperformed by models that are based on our detailed knowledge of speech, as 
soon as these knowledge-based models have been properly implemented. That is, they 
claim that our 'real' knowledge is more powerful than the stochastic knowledge of 
machines. However, one may wonder whether the knowledge gathered by a stochastic 
model from a large amount of training data is really that different from the knowledge 
we claim to have about speech. 
In the first place stochastic models are very well capable of extracting features from 
acoustic input. This was shown by Elman and Zipser (1988) who used a neural 
network to recognize the spectral pattern of the consonant and vowel part of the 
syllables [ba], [bi], [bu], [da], [di], [du], [ga], [gi], [gu]. For this purpose they chose 
the backpropagation algorithm (Rumelhart et al., 1986) to train a neural net with one 
hidden layer. After training they examined the response patterns of the hidden units and 
found that these units had extracted some phonological features from the training data. 
One hidden unit was for instance always 'on' for the vowel parts and 'off' for the 
consonant parts; another hidden unit was sensitive to alveolar stops. Although only a 
small part of the response patterns of the hidden units could be explained in terms of 
phonological features, it is beyond doubt that the neural nets use some kind of features 
to represent the acoustic data. It is not unthinkable that these features which are based 
on a stochastic optimality principle tum out to be more realistic than the phonological 
features based on 'intuitions' of phoneticians and linguists. 
In the second place our human knowledge of speech is also often of a stochastic nature. 
We know for instance that vowels in stressed syllables are longer than vowels in 
unstressed syllables (see e.g. Van Bergem, 1990). But where does this 'knowledge' 
stem from? We measure the duration of a lot of vowels both in stressed and in 
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unstressed syllables, calculate means and standard deviations for both groups and 
compare these measures. Is this not in fact the stochastic modelling of a large set of 
'training data'? 
One might oppose that in this case the researcher has learnt that the division of vowels 
into a stressed group and an unstressed group makes sense. This is true, but does the 
notion of stress actually contribute to a better recognition strategy? Stress is not a 
concrete property of the acoustic signal, but only an abstract linguistic concept that 
comes forward from reflection on the acoustic structure of words in our language. 
Consequently, stress cannot be directly extracted from the acoustic signal, but it should 
be detected through its acoustic correlates such as duration, energy, or pitch 
movements. Apart from the fact that the detection of stress in this way cannot be done 
perfectly, but only in a probabilistic way (!), it seems much easier to use the acoustic 
correlates of stress themselves in the recognition process. This is exactly what is done 
in the stochastic models. Consider for instance two stochastic models for the words 
conTENT and CONtent (stress indicated by capitals). Training data will cause, among 
other things, a difference in modelled duration between the stressed /£/ and the 
unstressed/£/. In this way linguistic concepts such as stress are implicitly implemented 
in stochastic models. 
Recently, Elman (1989) has discussed the importance of connectionist approaches to 
human speech processing. In this article we will discuss the importance of the Markov 
approach to human speech processing. The artificial neural networks that are used in 
the connectionist approach are clearly inspired on the neural properties of human 
memory (In section 3.1 this memory organization is discussed). This is not the case 
with Markov models which have a purely mathematical basis. Our justification for 
discussing Markov models in relation to human speech processing is that they are very 
well suited to model speech and that the strategies by which they do this, may be very 
similar to the ones human listeners use. The discussion will be based on four important 
problems in the field of human word recognition: 

1.  What kind of intermediate units (e.g. phonemes, syllables) are used by listeners to 
get from the acoustic input to some kind of abstract representation of words? 

2. How do listeners cope with the enormous amount of variability in the sounds they 
hear? 

3. How are words isolated by listeners from the continuous flow of speech? 
4.  In what way do listeners use higher level knowledge (e.g. syntactics, semantics) to 

efficiently extract words from the acoustic flow of speech? 

Most word recognition models in the psycholinguistic field focus on one or two of 
these problems and ignore the others or only vaguely refer to them. In this article all 
four questions will be discussed in section 3.1 to 3.4 based on the Markov approach in 
speech recognition. It is not our aim to contrast the psycholinguistic models with 
Markov models. We merely want to demonstrate the efficiency and plausibility of the 
probabilistic approach in speech recognition. Before we address the topics mentioned 
above, we will briefly discuss the basic principles of Markov models. 

2. MARKOV MODELS 

A Markov model is a probabilistic model that is composed of a number of states and 
transition probabilities between these states. In figure 1 a simple example of a 
(fictitious) Markov model is given that 'predicts' tomorrow's weather on the basis of 
today's weather in Holland (We restrict ourselves to two types of weather). This model 
has two states: SI (Rain) and S2 (Sun). If we have rain today, the probability of rainy 
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0.8 

0.2 

(Rain) 
0.6 

Figure 1. A Markov model that 'predicts' the weather in Holland. 

0.4 

(Sun) 

weather tom01Tow is 0.8 (80%) and of sunny weather 0.2 (20%). If on the other hand 
we have sun today, the probability of sunny weather tomorrow is 0.4 (40%) and of 
rainy weather 0.6 (60% ). 
It should be noted that time plays an important role in Markov models: We move from 
one state to another in successive time steps (in our example days), so in fact we are 
modelling the course of events. The self-loops in the model provide the possibility to 
stay for a number of time steps (days) in the same state. In our example it is more likely 
to stay in the 'rain'-state than in the 'sun'-state, so it is more likely to have a number of 
rainy days in succession than a number of sunny days. 
Another important aspect of Markov models is the training. How do we obtain the 
transition probabilities? In order to train our weather model we have to observe the 
weather for a long period and simply count the occurrences of all possible successions 
of weather types from each day to the next: Ri - R.i+I, R.i - Si+l, Si - Si+l, Si - Ri+l 
(R = rain, S = sun, i = day i). Suppose we have observed the weather for 1000 days 
and have found the following counts: 

Ri 

Si 

Ri+l Si+l 

800 

600 

200 

400 

These counts give rise to the transition probabilities shown in figure 1. Obviously, the 
reliability of the model increases with a larger amount of training data. 

0.2 

0.8 

(Rain) 
0.1 

Figure 2. A Markov model that 'predicts' the weather in Italy. 
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Suppose we have also trained a similar Markov model for the weather in Italy. This 
model is shown in figure 2. It will be clear that the model for Italy has a 'preference' 
for long sequences of sunny days, whereas the model for Holland has a 'preference' 
for long sequences of rainy days. Now consider the following observed sequence of 
weather types (called the observation sequence) for 7 successive days: 

OI..7 = R S S R R S S 
' 

We may ask ourselves whether this sequence was observed in Holland or in Italy. To 
answer this question we can simply calculate the total probability of this sequence (the 
output probabili ty) for each model by multiplying the successive transition 
probabilities. For the Dutch model we find an output probability of: 

Po = 0.2 x 0.4 x 0.6 x 0.8 x 0.2 x 0.4 = 0.003072 

and for the concurring Italian model we find an output probability of: 

Pr = 0.8 x 0.9 x 0.1 x 0.2 x 0.8 x 0.9 = 0.010368 

Since Pr is larger than Po this weather sequence was more likely observed in Italy. If the 
models are properly trained, we can use them in this way to recognize an observation 
sequence. 
In principle there are two ways of recognizing the input (i.e. an observation sequence). 
The first one is to compare the output probabilities of all the concurring models and 
choose the model with the highest probability (or alternatively make a hierarchy of more 
and less probable models). In this case the absolute value of the probabilities plays no 
role. This is the strategy that is applied in speech recognition with Markov models. 
Notice that in this case the input is always recognized. The second way is to compare 
the output probability of each model separately with the average output probability of 
that model. That is, a sample distribution of output probabilities could be made, if a 
large sample of correct input strings was fed to a trained model (The output 
probabilities would have to be normalized for input strings of different lengths). As 
shown in figure 3, the recognition decision could now be based on a critical value Pc in 
this distribution. Recognition would occur for input that would generate an output 
probability exceeding this threshold. Notice that this strategy, which resembles the 
'activation level' concept in the Logogen model, might lead to recognition of the input 
by several models simultaneously or to no recognition at all. The output probability 
sample distribution could be very useful in evaluating the plausibility of the model for 
the given input. In this way it could be used to properly deal with 'nonsense' input. 
This point will be further discussed in section 3.2. 

Pc Po 

Figure 3. Sample distribution of output probabilities for a single Markov model. 
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In automatic speech recognition the more powerful hidden Markov models are used. 
Any speech unit can be modelled e.g. phones, phonemes, diphones, syllables, or 
words. In the following we will not go into the mathematical background of hidden 
Markov models (interested readers are referred to e.g. Van Alphen and Van Bergem, 
1 989), but we will focus exclusively on the recognition strategies that are used. For this 
purpose we will present things somewhat simpler than they really are, without violating 
the basic ideas. 
In 'normal' Markov models the observations are directly associated with states. This is 
no longer the case in hidden Markov models, where for each state a separate layer is 
constructed with observation probabilities. The observations are usually some kind of 
spectral representation of the acoustic signal (e.g. LPC-coefficients or bandfilter­
values) measured at discrete time steps (typically 10 ms). The entire (high-dimensional) 
spectral space is split up into a number of non-overlapping areas with a technique called 
vector quantization and the spectral representation of each occurring sound can be 
mapped on to one of these areas. When a particular sound is uttered repeatedly, there 
will usually be significant spectral differences between individual occurrences of the 
sound and consequently some of .the uttered sounds may be mapped on to different 
spectral areas than others. The observatiov probability ·disnjbution is obtained by 
counting the number of times the occurrences of a particular sound (in a spectral 
representation) a.re mapped on to each of the spectral areas. 
To illustrate these ideas, consider two hidden Markov models for the words conTENT 
and CONtent. For the sake of simplicity, it is easiest to imagine that each phoneme of 
the words is modelled by just one state (In reality the number of states can be freely 
chosen and the acoustic evidence is divided in a statistically optimal sense over the 
states). The durations of the stressed/£/ and the unstressed /E/ are modelled by different 
self-loop probabilities in the /E/-state. The state associated with the stressed /E/ has a 
higher self-loop probability which means that the model 'prefers' to stay in that state for 
a longer stretch of time. Apart from an effect on duration, stress may also effect the 
spectral quality of the vowels (see e.g. Van Bergem, 1 990). The occurrences of the 
stressed /E/ will be 'full' vowels most of the time, whereas the occurrences of the 
unstressed /e/ may show a greater variation in spectral qualities ranging from a 'full' 
vowel to a more or less schwa-like sound. This will result in a peaked observation 
probability distribution for the stressed /E/ and a flat observation probability distribution 
for the unstressed /£/. The (fictitious) distributions for the stressed /E/ and the 
unstressed /E/ are given in figure 4. In this (fictitious) example 250 spectral areas were 
defined, each of which is simply indexed by an integer number between 1 and 250 (It is 
assumed that consecutive integers indicate adjacent spectral areas). None of the spectral 
areas has a probability zero (although some have an extremely small probability), 

+STRESS ·STRESS 

j 
250 250 

Figure 4. The (fictitious) observation probability distributions for the stressed /£/ of the word 
con TENT (on the left) and the unstressed /El of the word CONtent (on the right). 
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because in principle any area may match the vowel /E/ in an infinite amount of training 
data. Of course the other parts of the words conTENT and CONtent are modelled in a 
similar way. Apart from spectral quality, also energy or pitch can be taken into account. 
The output probability of the model is obtained by combining (multiplying) the 
transition probabilities and observation probabilities of all states. Stressed vowels are 
modelled with high transition (self-loop) probabilities and high observation 
probabilities and so they can significantly raise the output probability of the correct 
word model with respect to the other models. In general, the reliable parts of a word are 
in particular responsible for a relatively high output probability of the appropriate word 
model and therefore the recognition of a word is for the greater part determined by its 
reliable parts, which is a desirable property. 
Another important aspect of hidden Markov models is that the acoustic evidence for a 
word can be directly matched with the model without intermediate levels of 
representation. The stressed and unstressed variants of the vowel /E/ in the words 
conTENT and CONtent for instance are modelled with their own characteristic areas in 
the spectral space. Explicit rules that account for coarticulation effects, reduction 
effects, assimilation effects etc. are not needed by the model. Instead, knowledge about 
these effects is implicitly present, because the most probable areas in the spectral space 
are determined by these effects. 

: . . 

3. IMPORTANT TOPICS IN HUMAN WORD RECOGNITION 

3.1 The intermediate units in word recognition 

Most psycholinguistic word recognition models propose a bottom-up flow of the 
acoustic input through one or more intermediate levels to some kind of abstract 
representation of words. The units at these intermediate levels are e.g. features, 
phonemes, or syllables. Klatt (1989) already pointed out, that intermediate 
representations of the acoustic signal may lead to an accumulation of errors which can 
severely degrade the recognition performance. 
Consider for instance the case that phoneme models are used to build up the words 
conTENT and CONtent. It will be clear that labelling of the second vowel in these 
words as /£/ does not do justice to the acoustic reality that it can have a variety of 
spectral qualities (different for the stressed and the unstressed variant), each with a 
certain probability of occurrence. Moreover, the distinction between conTENT and 
CONtent will fade away, if only one phoneme model is used for both the stressed and 
the unstressed /E/. There could of course be two phoneme models for the /£/, one for 
the stressed variant and one for the unstressed variant. However, in reality an entire 
lexicon of words has to be modelled, in which the /£/-phoneme occurs each time in a 
different spectral shape, not only due to stress, but also due to coarticulation, 
assimilation, etc. And so a lot of different /E/-models would be needed. The problem is 
how to select a set of /£/-models that is representative of all the existing varieties. The 
use of rules for coarticulation, assimilation, etc. would not be very helpful, because 
they require the recognition of adjacent phonemes which are also 'coloured' by 
coarticulation, assimilation, etc. 
The choice of larger intermediate units (e.g. syllables) as building blocks for words 
would introduce less problems than the use of phonemes, because e.g. coarticulatory 
effects within these units can be modelled. However, the most simple and robust way 
of recognizing words appears to be an immediate map of spectral events with word 
templates that were also modelled as strings of spectral events. As we have seen, this 
can be efficiently done with the approach used in hidden Markov models. 
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In practice, however, the use of such word models in the Markov approach causes two 
problems for large lexicons. In the first place it is hard to get enough training data for a 
proper modelling of the words and in the second place the word models require a lot of 
(computer) memory space. If a large lexicon of words has to be modelled, these 
problems are often avoided by using intermediate units of speech after all (usually 
diphones or triphones), despite the fact that recognition performance decreases. The 
intermediate units, that are used as building blocks for words, do not need a lot of 
memory space and they are much more frequently represented in the training data than 
words. It is interesting to find out, if these two problems would also apply to humans. 
The amount of data, that is used to train hidden Markov models, is usually no more 
than a few hours of speech. More data would be impractical, because the training of 
hidden Markov models is rather time consuming. The research situation requires that an 
entire lexicon of words is trained in one session with a relatively small amount of 
training data to get results as quickly as possible. To meet these demands, suboptimal 
training methods have to be chosen. For humans this situation is clearly very different. 
Young babies begin to build up a very restricted lexicon of words and have an 
abundance of 'training examples' of these words at their disposal. During childhood, 
the number of words in the lexicon can gradually grow, until a large lexicon has been 
built up by the time adulthood is reached. In this long period a hugh amount of 'training 
examples' passes the mind, so that word models can be perfectly tuned. 
With regard to the problem of memory capacity, it appears that humans can store an 
enormous amount of patterns and that they posses a very efficient retrieval mechanism. 
Elman (1989) pointed out, that we are inclined to think of memory as a kind of 'box­
structure' in the way it is used in a (von Neumann) computer. In such a passive 
memory structure all patterns that are stored will be placed in a separate 'box' and each 
new pattern thus requires an extra 'box'. This means that the required memory space is 
directly related to the number of patterns that are stored. Unknown input has to be 
matched with each of the patterns ('boxes') one at a time and therefore the retrieval time 
is also directly related to the number of patterns that are stored. To illustrate the way a 
memory can be differently organized, consider the simple artificial neural network 
shown in figure 5 that simulates the logical OR-function. It consists of two input nodes 
X1 and X2, one output node Y, weighted connections between them (WI and W2) and 
a hard limiter/Ca) that transforms the output values to a binary code. The output can be 
calculated as the weighted sum of all input values plus an 'offset' value (which is -1 in 
this case). The hard limiter shown on the left of figure 5 transforms all positive output 
values to '1' and all negative output values t6 'O': 

2 

Y = f ( -1 + L W ;X i ) 
i=l 

The crucial thing to notice is that all four occurring patterns are recognized by one and 
the same network. In addition, the computation of the output value always takes the 
same time regardless of the number of patterns that are stored. The strategy that is used 
in a neural network, is to adapt ('train') the connection weights in such a way that all 
patterns are optimally recognized. Since the pathways from the input nodes to the 
output nodes form a parallel network of connections, all information conveyed in the 
input nodes can stream at the same time to the output nodes which can give very fast 
retrieval times. This parallel processing cannot be performed by a conventional 
computer, which can only do one computation at a time (serial processing). 
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Figure 5. A simple neural network simulating the logical OR-function. This function requires a 'l' at 
the output if at least one of the input values is a 'l' (see the table on the right). The output 
values are transformed to a binary code with the hard limiter shown on the left. 

The efficient active memory structure that was demonstrated here, resembles the way 
human memory is organized. So it appears that the practical problems that arise by the 
use of word models in the Markov approach (lack of training data and (computer) 
memory capacity) do not apply to humans. 
If we assume that words are recognized by humans without any intermediate units, this 
poses the following problem: How do we recognize the smaller units when these are 
spoken in isolation? An answer to this question might be that the acoustic input is 
simultaneously processed through separate channels, such as phoneme channels, 
syllable channels etc. These parallel processes work independently. The results of all 
parallel processing steps could be compared at a superior level. This might be done by 
chopping the unit at a higher level into smaller units of the lower level. For instance the 
badly pronounced word /b11.J/ might be recognized by the word processing channel as 
the word "bus" which can be chopped into the (ideal) phonemes /b/, /11./ and /s/, 
whereas the phoneme processing channel would produce the phoneme string /b/, /Al 
and /J/. In this way a listener could find out that the word "bus" was badly pronounced. 
The proposed theory of parallel channels can easily account for the processing of new 
words that have to be added to the lexicon. These unknown words are processed by the 
lower levels such as for- instance the phoneme channel. The string of phonemes is 
subsequently passed on to the long term memory where it serves as an initial word 
template that can be further trained with other specimens of the word. 

3. 2 The variability in speech 

There are many sources of variability in speech, such as speaking rate, speaking style, 
vocal tract length, dialect, etc. How do listeners cope with all this variability in speech? 
There are three options: 

1. They construct a new template for every variant of a speech unit. This would lead to 
an almost infinite amount of templates. 

2. They use one 'average' template for each speech unit and apply rules to account for 
all the variants of the unit. The main problem with this approach is to know which 
rule to use, if you don't know what has to be recognized. In other words, you have 
to recognize before you can apply the rule. Consider for instance the sentence "The 
typhoon came to New York". The /n/ at the end of "typhoon" may be changed to a 
/rj/ under the influence of the /kl at the beginning of "came". This phenomenon can 
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be stated in an assimilation rule, but we should be well aware of the fact that such a 
rule is used to explain a sound shift after we have found out which words were 
involved. In for instance the sentence "The king came to New York" no assimilation 
has occurred. We are awaTe of this, because we know that the word "king" ends 
with a /rj/. For a recognition system such rules would only be useful if they could be 
applied in advance and not after the recognition was arready done. As stated before, 
such rules arise from reflection on acoustic phenomena that we observe. 

3. They use one 'average' template or only a small number of 'average' templates for 
each speech unit. This can be accomplished if the speech units are robust enough. 

The third option appears to be the most attractive one, but can the units of speech be 
robust enough to cope with all kinds of variability? It will be clear that words are more 
robust units than for instance phonemes. A consonant that has been affected by 
assimilation will be recognized different from the consonant that was intended by the 
talker; a reduced vowel in a word will be easily confused with other vowels. However, 
a word like "typhoon" can still be easily recognized if the first vowel is reduced and the 
/n/ is replaced by a /rj/. The power in the strategy of hidden Markov modelling is that 
training emphasizes the more reliable parts of the word (for instance the stressed 
syllable) by means of strongly peaked distributions of acoustic events. These reliable 
parts are especially helpful to discriminate between words. The robustness of words in 
speech recognition can be compared with the robustness of large visual patterns. A face 
for instance can easily be identified under a lot of circumstances (laughing, crying, 
eating etc.). It can even be identified if only pait of it is shown or if it is 'distorted' by a 
beard or glasses. In the same manner, a word can be recognized easily under a lot of 
circumstances, even if parts of it are missing. 
Hidden Markov models are flexible enough to cope with different speech rates. 
Durations ai·e namely not modelled by mean values and standard deviations, but by 
probabilities (see chapter 2). For a word model this means for instance, that as long as 
the durations of the different parts within the word remain unchanged relative to each 
other, recognition performance will not be affected. Hidden Markov models can also be 
trained for speaker-independent recognition. That is, single word models can be 
successfully trained for a large group of different speakers. This was shown by Lee 
(1989), who used hidden Markov models to train a lexicon of almost 1000 words. 
Training data consisted of a number of sentences in which these words occurred, read 
aloud by more than 100 different subjects. The recognition accuracy of the word 
models, tested with the sentences of 15 new subjects, was over 70%, based on acoustic 
evidence alone. 
So it appears that probabilistic word models can be very robust with regard to different 
kinds of variability. They may even be robust enough to recognize speech properly 
without the need to normalize for different rates, speakers, etc., especially if we take 
the support from higher level knowledge into account (see section 3.4). To deal with 
very large differences between speakers, due to dialect, sex, etc., different sets of 
templates for separate speaker groups could be introduced. Support for the existence of 
such different sets of templates in the human mind was found by Van Bergem et al. 
(1988), who showed that humans probably use different templates to recognize the 
vowels from men and children. 
Let us now return to the issue of nonsense words already mentioned in chapter 2. 
Given the enormous amount of variability in speech utterances, it is impossible to make 
a clear distinction between 'real' words and 'nonsense' words. Human listeners are 
very well capable to recognize a mispronounced word or a word that was partly masked 
by some kind of noise, although in a strict sense these words would have to be marked 
as 'nonsense'. In a normal communicative situation a listener will always try to find a 
match for the words he heai·s, even if they are unknown to him. This is done in the 
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Markov strategy by comparing the output probabilities of all possible words and 
picking out the most likely one. However, the 'distance' between the output probability 
of the recognized word and the average output probability of the word (see figure 3) 
gives the opportunity to establish the plausibility of the recognized word. If the 
plausibility is too low, a listener may wonder if he has heard the word correctly and ask 
the talker for a verification. 

3.3 The processing of continuous speech 

In the spoken sentence "I recognize speech" there are no silences between the words 
that could serve to detect begin points and end points. A segmentation of the sentence 
into words or smaller units prior to recognition is extremely difficult. Besides, a closer 
look at the string of sounds that composes this sentence reveals that several other words 
are embedded in it, for instance "wreck", "nice", "ice", "peach", or "each". How do 
listeners choose the right set of words from the abundance of possible words that are 
usually conveyed in a sentence? 
In speech recognition with hidden Markov models, this problem is dealt with in a 
manner that is rather straightforward: The probability of all possible paths of all 
possible word sequences is calculated and the path with the highest probability is 
chosen. As shown in figure 6 on the left, the recognition search tries to determine the 
best path through a network of /1 words. Examples of such paths are shown on the 
right of figure 6. 

· 

� 

� 

� 

Figure 6. Recognition of continuous speech from a lexicon of n words. On the left a network with a 
feedback loop is shown that contains n words. Examples of possible paths through the 
network are shown on the right. 

The lower bound to the number of word models in a string is one. The upper bound is 
determined by the total duration of the sentence and the minimal duration for each word 
model. In each candidate string the word models are matched to the acoustic data in the 
best possible (statistical) way. If a sentence contains for instance several words (in 
reality) and it is matched with only one word model, all acoustic evidence in the 
sentence would have to be divided over just this one model. Therefore, the output 
probabilities of the same word models in different strings may be very different. 
This may seem a rather exhaustive way of recognizing a string of words, because the 
number of possible paths grows exponentially with the number of words in the lexicon. 
However, algorithms have been developed that give a drastic reduction in the number 
of necessary computations (e.g. a Viterbi search, see Lee, 1989) by only considering 
paths with the highest probability at each time step. These algorithms are very efficient 
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and robust and there is no need for segmentation beforehand. Furthermore, this 
strategy gives the opportunity to integrate higher level knowledge with the acoustic 
evidence. This point will be discussed in the next section. 
The problem of words that are 'hidden' in other words, as mentioned at the beginning 
of this section, can be solved with the proposed strategy. For the sentence "I recognize 
speech" several strings are hypothesized that contain the word "speech" and others that 
contain the word "each". The acoustic evidence for both words is probably well 
matched with their corresponding models in these strings. However, the sentence part 
"I recognize sp" has to be accounted for as well in the strings containing the word 
"each". This part will probably poorly match any possible combination of words, so 
that the overall probability of all the strings containing "each" will be relatively low. 
Notice that this argument would not apply to the sentence "I recognize peach" . In this 
case higher level knowledge is needed to solve the acoustic ambiguity. In the next 
section we will discuss how this can be done. 

3.4 The use of higher level knowledge in speech recognition 

There are at least three possible ways of using higher level knowledge in the processing 
of sentences: 

a. After the acoustic processing (1). 
The acoustic analysis (e.g. performed in several steps with intermediate speech 
units) could result in a first hypothesis of a word string that could be input to a 
higher level analysis. This might result in a rejection of the word string proposed by 
the acoustic analysis. In this case the acoustic analysis would have to be repeated, 
which would lead to a new hypothesis of a word string, which might again be 
rejected etc. (see figure 7a). The problem with this approach is how to perform the 
acoustic analysis after the first one, which was obviously done with the highest 
possible accuracy. Should we repeat the acoustic analysis with less accuracy? Which 
parts of the acoustic input should be labelled differently? Of course the acoustic data 
would have to be available for a long time if the acoustic hypotheses were rejected 
over and over again. In addition, it is not at all clear what criteria should be used by 
the higher levels to reject the acoustic analysis. Should we reject the proposed word 
string because the words have a low frequency of occurrence or because the words 
are unlikely in the given context? Should we reject the entire word string or only a 
part of it and if so which part? 

b. After the acoustic processing (2). 
The string of acoustic events could be processed in the way described in section 3.3. 
The most probable string of words resulting from the acoustic analysis could be 
input to the higher level analysis. This might result in a rejection of the word string 
proposed by the acoustic analysis. In this case the second best word string found by 
the acoustic analysis could be input to the higher level analysis and so on, until the 
best compromise between all available knowledge sources would be reached (see 
figure 7b). In this approach all possible word strings that were analyzed at the 
acoustic level (or a subset) would have to be stored. Moreover, the higher level 
analysis would have to be done over and over again Gust as in the previous 
proposal) and solid criteria for rejecting the acoustic analysis would have to be 
established. 

c. Simultaneously with the acoustic processing. 
This could be accomplished by combining the acoustic probabilities that were 
obtained in the way described in section 3.3 with higher level probabilities (see 
figure 7c) in one analysis step. 
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Figure 7. Three ways of recognizing a string of words. In (a) both the acoustic analysis and the 
higher level analysis are done over and over again. In (b) all acoustic alternatives are stored 
(sorted by likelihood) and subsequently tested against the higher level evidence one at a 
time. In (c) the most probable word string is produced based on the acoustic analysis and 
higher level knowledge simultaneously; there is no feedback. 

The most efficient method of using higher level knowledge appears to be the last one. 
But how can we translate higher level knowledge into probabilities? To illustrate the 
way this can be accomplished, we consider four types of probabilities. Each type 
works on a different stretch of time: 

1. Probability caused by frequency of occurrence. This probability is a permanent part 
of a word. 

2. Probability caused by word order effects. The probability that for instance the article 
"the" is followed by a word other than a noun or an adjective is very small. The 
probability that a word is followed by itself is even smaller (at least in Western 
languages). Such a network of inter-word probabilities constitutes a permanent part 
of the lexicon. 

3. Probability caused by the topic of conversation. A lecture about sailing boats may 
for instance raise the probability within several 'semantic fields' (containing words 
like "sea", "captain" etc.). This probability will last for the duration of the 
conversation (a few minutes to a few hours). 
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4. Probability caused by a triggering of words within the same 'semantic field'. If for 
instance the word "sit" is hypothesized in a sentence, it is likely that words like 
"chair" or "couch" follow. This probability will last only a couple of seconds. 

The total probability of a candidate word string for a sentence can simply be calculated 
by multiplying the total acoustic probability with the total higher level probability. This 
results in just one word string with the highest combined probability (and a hierarchy of 
less probable word strings). Up till now only the higher level probabilities mentioned 
under (1) or (2) are often successfully used in hidden Markov models. Those 
mentioned under (3) and (4) require the construction of 'semantic fields' by connecting 
word concepts that are semantically similar in some way. Such a network could be 
build up from the moment that we learn our first words. The acoustic ambiguity, 
mentioned in the former section, can be solved with the probabilities mentioned under 
(3). If the topic of conversation would e.g. be 'food', then the probability of "peach" 
would be raised. If, on the other hand, the topic of conversation would be 'phonetics', 
then the probability of "speech" would be raised. 
Postprocessing may occur at the level of interpretation (reflection on the recognized 
word string). At this stage of processing all earlier analysis steps may very well have 
been disposed of already, except for the final results. If for some reason the sentence 
"The hat climbed the tree" was heard, it may be substituted by "The cat climbed the 
tree", because of the acoustic similarity of "hat" and "cat" and the fact that it is 
implausible that a hat climbs a tree. Only problems in interpretation may lead to such a 
substitution of words. Similar adjustments can be made at this stage to grammatical 
errors in the message. In this view the only syntactic constraints that are used before the 
postprocessing are word order probabilities (the second component mentioned above). 

4.  CONCLUSION 

In this article we have tried to show the efficiency and the plausibility of word 
recognition with probabilistic models. This was done by referring to the Markov 
approach in speech recognition. We think it very likely that human word recognition is 
also primarily of a probabilistic nature. If one asks somebody to estimate the probability 
of sunny weather in Holland or Italy, he will presumably be able to give you a 
reasonable guess. People also very well know that the chance to be hit by lightning is 
very small. The concept of probability is surely not unfamiliar to us. It is a very natural 
way of expressing the proportion of times a certain event does occur and does not 
occur. People can use this probabilistic knowledge about events to formulate explicit 
'rules'. 
We demonstrated how probabilistic strategies can be used to account for the variability 
in speech utterances, to isolate words from the continuous flow of speech, and to 
combine in an elegant way higher level knowledge with the acoustic evidence. 
Furthermore, we proposed a separate processing of speech at the level of words and at 
the lower levels (e.g. phonemes). 
In what way the probabilistic strategies could be realized in our brain is as yet 
uncertain. Perhaps the artificial neural networks with their more probable and less 
probable connections between nodes may give a good reflection of reality. However, it 
was not the aim of this article to investigate memory structures, but merely to 
demonstrate the power of the probabilistic approach in word recognition. 
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