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Abstract 

The error dispersion is a perplexity related measure of the effective number of error 
categories used by listeners in an identification experiment. The error difference is 
calculated from the error dispersions of several confusion matrices and measures the 
difference between these confusion matrices. The error dispersion and the error 
difference are largely independent of the error rate. It is shown in this paper that 
correlations (and the absence thereof) between the error dispersion and the error rate that 
are found in identification experiments can be used to infer underlying regularities in the 
identification process. The use of these techniques is demonstrated with examples from 
the literature. 

1. Introduction 

For analyzing the results of identification experiments two different approaches are 
used. The simplest type of analysis uses the number of incorrect identifications, i.e., 
the error rate, to compare results from different experiments or for different 
conditions. The second, much more elaborate method uses Multi-Dimensional scaling 
to analyse the internal structure of the "response-space". Both methods have their 
strengths and weaknesses. The error rate is conceptually the simplest measure and can 
be used to quantify the differences between experiments and conditions, but it uses 
only the correct responses and ignores the incorrect ones. Multi-Dimensional scaling 
techniques can unravel intricate relations between the acoustic structure of stimuli, 
experimental conditions, and perceptual categories. However, these techniques can be 
used only on "full" matrices (not too low an error rate) whereas asymmetry is hard to 
handle which limits its use. Moreover, the level of detail given is often too high and it 
is difficult to quantitatively compare the results of different experiments. As a 
consequence, the result of a multi-dimensional scaling analysis needs a lot of "post­
processing" to extract the relevant features. Beside these two broad approaches, there 
are other. more specialised methods of analysis, e.g., distance metrics (d', see e.g., 
Van \Vieringen, 1 995), entropy related measures (Miller and Nicely, 1 955; Allen, 
1994 ), or articulation density (Allen, 1994 ). These approaches have in common that 
they are generally too specialised for the average identification experiment (e.g., d' 
and articulation density) or interpretation itself is non-trivial (entropy). 

x A preliminary version of this paper was presented at Eurospeech 95 in Madrid (Van Son, 1995). 
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In many experiments, it is often the distribution of the errors, and not their number, 
that is the meaningful measure. However, at the same time there is no need for 
detailed structural information on the distribution of the responses. It can be seen from 
the previous description that there is a need for analysis tools of intermediate 
complexity. More detailed than the error rate, but more global than scaling 
techniques. 

This leads us to the following two questions. First, how can we quantify in a 
meaningful way the distribution of errors in an identification experiment? Second, can 
we quantify the differences between individual error distributions? 

2. The perplexity 

The approach taken here to answer the questions posed in the previous section is 
based on standard Information Theory (Khinchin, 1957; Sveshnikov, 1968; Press et 
al., 1988; Allen, 1994). A very useful method to analyse stimulus-response relations is 
to use the perplexity. The perplexity is primarily used to describe syntax complexity 
in automatic speech recognition (Bahl and Jelinek, 1990). In the context of this paper 
the perplexity is the "effective" number of responses per stimulus or stimuli per 
response. The perplexity is calculated from the basic entropy values of a confusion 
matrix (see figure 1). Based on these basic entropies the conditional entropies and 
perplexities are defined as respectively equations 1 and 2 (Press et al., 1988; Bahl and 
Jelinek, 1990): 

H(ResplStim) = H(Stim, Resp) - H(stim) 
H(StimlResp) = H(Stim, Resp) - H(Resp) 

Perplexity(Stim) = 2H(Resp!Stim) 
Perplexity(Resp) = 2H(Stim!Resp) 

3. The error dispersion, d 

(1) 

(2) 

The perplexity is dominated by the number of correct responses, i.e., 1 - error rate. 
However, the aim is to describe the distribution of the incorrect responses. This can 
be done by "normalizing" the perplexity for the error rate. The result is called the 
error dispersion, d (equation 3, see Van Son, 1994, 1995 for a derivation). 

ds 
= 2h5. h = H(ResplStim)- HE 

' s 
E 

d = 1hr. h = H(StimlResp )- HE 
r � ' r 

E 
With the entropy of the error-rate defined as: 

H2 = -s·2log(s) - (1- c)·2log(l- s) 

(3) 

The error dispersion, d, is the perplexity with the correct responses "removed". It 
indicates the effective number of error categories per either stimulus (ds) or response 
(dr). 

Mathematically speaking, the error dispersion is largely independent of the 
absoiute error r'lle. There remains a small indirect dependence on the disrribution of 
the correct responses. If the distribution of correct responses is unbalanced, i.e., errors 
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Figure 1. The entropy measures of a confusion matrix. H(Stim, Resp): the entropy of the 
stimulus response pairs. H(Stim): the entropy of the stimuli. H(Resp): the entropy of the 
responses. Si: the number of occurrences of stimulus i. Rf the number of occurrences of 
response j. Pij : The number of occurrences of response j to stimulus i. N the total number 
of stimuli and responses. 

are concentrated in a subset of the stimuli and responses, a change in the error rate 
will induce a change in the distribution of the correct responses. This latter change 
again will affect the error-dispersion. This residual dependency can be "normalized" 
out of the error dispersion by decomposing it into an error-dependent part and a part 
that depends on the distribution of the correct responses. However, this approach falls 
outside the scope of this paper. 

4. The error difference, 8 

When confusion matrices are combined, i.e., experimental data are pooled, the 
entropies (H(Stim, Resp), H(stim), and H(Resp)) of the resulting pooled matrix are 
larger than the corresponding mean entropies of the contributing matrices. The 
difference (i.e., Hpooled - Hmean) is a measure for the differences in the distribution 
of stimuli, responses, and stimulus-response pairs. The same holds for the derived 
measures of the perplexity and the error dispersion. This difference can be used to 
define a measure that quantifies the difference in the distribution of the errors between 
confusion matrices. The error-difference, 8, is such a measure. It is defined in 
equation 4. Its general definition takes into account the weighting of the individual 
matrices, i.e., not all matrices contribute an equal number of errors to the pooled 
matrix (see Van Son, i994, 1995 for a derivation). 

hpooled -h 8 = s s . 
s H ' 

a 
In which: 

hpooled _ h 
() = r r 

r H a 

(4) 

8 is the fraction of the total (pooled) number of errors, sP00led, that is not "shared" between the 
matrices (i.e .. errors that are ''uniaue'' to individual matrices) 
hpooled is calculated over the po�led confusion matrix 

11 = I a��7p� . hi is rhe mean of the individual matrices (weighted by their contribution to crooied) 
i £ 

" 

") . Ha is the entropy of the weighting factors O'.i of the matrices (- �1og[number of pooled matrices]) 
� 
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Figure 2. Prototypical relations between the Error dispersion and the Error rate (see text) 

In words, the error difference, 8, is the fraction of the total (pooled) number of errors, 
eP00led, that is not "shared" between the matrices (i.e., errors that are "unique" to 
in di victual matrices). 

The error difference is based on the logarithm of the error dispersion (i.e., on h) 
which is nomrnlized with respect to the size of the confusion matrix, i.e., the error 
dispersion is the number of error categories per stimulus or response category. As a 
result of how hpooled and h are calculated, differences between individual matrices 
due to non-overlapping stimulus or response sets are discounted from the error 
difference itself. Furthermore, the error difference, 8, is normalized with respect to the 
combined stimulus or response sets. This means that the error difference is reduced 
when non-overlapping confusion matrices are used compared to when only the 
overlapping parts of these confusion matrices are used. 

5. The relation between the Error Rate and the Error Dispersion 

Although the error dispersion is mathematically (almost) independent of the error rate, 
in an actual experiment you will be looking for relations between these measures. The 
question is then to determine how the error dispersion changes with increasing 
(decreasing) error rates. The prototypical relations are given in figure 2. 

In figure 2 several possible correlations between the error rate and the error 
dispersion are drawn as straight lines. One possibility is that both are not correlated 
because one of them is essentially fixed. In general, if the errors are dominated by a 
response bias (e.g., long/short vowel confusions) that varies in strength. the 
distribution of the errors does not change when the error rate itself changes. As a 
result, the error dispersion will be nearly fixed with error rate (the horizontal line in 
figure :2). At the other extreme, all errors can be concentrated in only a subset of the 
tokens which are always identified incorrectly (e.g., short realizations of intrinsically 
long vowels versus short vowels). As the specific incorrect responses vary with the 
experimental conditions, but the number of incorrect responses does not, the result 
will be a nearl� fixed error rate with varying error dispersion (the vertical line in 
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Figure 3. Token construction for the experiment of Pols and Van Son (1993). Tokens 
were synthesized with formant tracks as indicated in the two plots. Nine different F11F2 
midpoint values were used, corresponding to the Dutch phonemes shown below the 
plots. Each parabolic formant track shape was synthesized with 4 durations. The tokens 
with stationary formant tracks were synthesized with 6 durations. Because of limitations 
of formant synthesis, not all target points could be synthesized with all formant track 
shapes. 

figure 2). In this case, it is an open question who made the incorrect identifications, 
the experimentator or the subjects. 

An experiment in which either the error dispersion or the error rate is fixed will be 
quite exceptional. A more likely result is a positive correlation between the error 
dispersion and the error rate. Such a result indicates that new errors are distributed 
over new responses. That is, as a stimulus elicits more errors, these errors are 
distributed over more responses. In short, a growing error rate indicates a growing 
confusion. The actual slope of the linear regression line is a measure of the number of 
error categories that are added per "new" error. 

A very interesting type of ( cor-) relation is when the error dispersion reduces with 
increasing error rate, i.e., a negative correlation. This can happen when there is a fixed 
"background" of errors with a high error dispersion superimposed on a varying 
response bias with a low error dispersion. The error dispersion is then some kind of 
combination (not necessary linear) of the individual contributions. In this situation, 
the (combined) error dispersion decreases in size when the relative strength of the 
bias, and hence the error rate, increases. An example could be an experiment in which 
long/short vowel confusions are induced by varying token durations and 
indiscriminate errors by a fixed level of added noise (a fixed, low, Signal-to-Noise 
Ratio). In such a case, the error dispersion will reduce when the response bias 
becomes stronger, and as a consequence, the error rate becomes higher. 

6. Examples from the literature* 

The above theory is tested on a number of papers taken from the literature. When 
possible. the correlation coefficients are tested for statistical significance. However, 
statistically significant correlations are not used to infer a causal relation with 

x These and other exam�s can be examined in detail on the W'.v"'\V. URL: 
"http:iifonsg3.iet.uYa.nl/SerYices.htmi". It is aiso possible to test new examples on-line 
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Figure 4. Results of the identification experiment of Pols and Van Son (1993). See figure 
3 for token construction. Left panel: Error dispersion, ds, versus error rate for each 
duration (ignoring long/short confusions). The light hatched squares are the results for 
the "stationary" tokens with durations of 12.5 and 6.3 ms. Right panel: Error difference, 
85, between tokens with "opposite" formant track curvatures. 

experimental conditions. Such an interpretation would require a detailed analysis of 
the underlying experiments which is outside the scope of this paper. 

6.1. The influence of formant track shape on vowel identification 

In an experiment to determine how vowel identity is influenced by the shape of 
formant tracks, Pols and Van Son (1993) performed a listening experiment with 
synthetic stimuli. For each of nine different F11F2 "target" points distributed over the 
vowel triangle, five formant track shapes were constructed: one stationary and four 
with parabolic F 1 or F2 tracks. All five track types had the same formant values in the 
center. These track shapes were synthesized with 4 or 6 different durations (figure 3). 

Subjects were asked to identify the sounds as Dutch vowels. The results indicated a 
shift in the responses corresponding to an averaged formant value for the synthetic 
vowels rather than some form of "perceptual overshoot". The associated error 
dispersions, error rates, and eITOr differences are calculated from the raw data (figure 
4, Pols and Van Son, 1993, do not give eITor rates). 

Figure 4 shows that there was a large spread in the error rates for the different 
conditions, from below 10% to over 40%. The individual conditions with respect to 
the formant track shape are nicely separated in the plot of error dispersion versus eITor 
rate. Up- and downward parabolic F1 tracks have distinct eITor dispersions. Up- and 
downward parabolic F2 tracks have distinct eITor rates. The short duration (12.5 and 
6.3 ms) stationary tokens have high error rates and high error dispersion, which 
separate them from the non-stationary tokens which have comparable error rates but 
lower eITor dispersions. The fact that the eITor dispersions of the non-stationary tokens 
are all around 1 indicates that the eITors are concentrated in a single category for each 
stimulus. 

The separation between tokens with upward and downward pointing formant tracks 
is even more evident when the eITor difference is used (figure 4). Although the eITor 
dispersions of tokens with up- and downward pointing F2 tracks are equal, the eITor 
difference is over ij).5, indicating that more than half the eITors are different (figure 4). 
For the F 1 shapes. large differences are found too. However, here the error difference 
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Figure 5. Token construction for the identification experiment of Van Son and Pols 
(1995). Starting from eve fragments excised from read text, tokens were constructed by 
progressively removing more and more of the context and the transition region of the 
target phoneme, either the vowel or the pre- or post-vocal consonant. Either the vowels, 
or the pre- and post-vocal consonants were identified in different experiments. 

is reduced due to the large difference between the sets of stimuli used (6 versus 9 
formant "targets", see figure 3). In total, the large error differences indicate that the 
errors are concentrated in different categories for different formant track shapes. 

Using a different type of analysis, Pols and Van Son (1993) concluded that the 
parabolic formant tracks induced an averaging in the perception of the formant values. 
The result is that the responses are shifted towards vowels with a lower formant target 
value for tokens with downward pointing (n) formant tracks and towards vowels with 
a higher formant target value for upward pointing (u) formant tracks: The errors in 
both cases would exclude each other. ·This behaviour would result in a large error 
difference between tokens with upward pointing and tokens with downward pointing 
formant tracks, as is indeed manifest in figure 4. 

6.2 The influence of context on identification 

Using natural (read) speech, Van Son and Pols (1995a,b) investigated how the 
presence or absence of nearest neighbour context affected the identification of vowels 
and consonants from read CVC tokens from a long, meaningful text. 

Although the error rates for CV- and VC-type tokens are comparable in size, figure 
6 shows that the underlying cause of the errors could be very different. The VC-type 
tokens show a strong correlation between error dispersion and error rate, akin to the 
"general confusion'' line in figure 2. The CV-type of tokens combine a virtually 
constant error dispersion with a \Videlv varving error rate. Vowel identification (the 
CVC-type tokens) b�haves more like �ons�na;t identification in CV-tokens tha� in 
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Figure 6. Results of the vowel and consonant identification experiments of Van Son and 
Pols (1995a,b). For a specification of the stimuli, see figure 5. Long/Short vowel, or 
consonant voicing, errors were ignored. Left panel: Error dispersion versus error rate, ds, 
* p :::;; 0.01, two tailed. Right panel: Error difference, Os, between tokens with accented 
and non-accented vowels. 

VC-tokens. This suggests that the errors in the identification of pre-vocalic 
consonants and vowels (CV and CVC in figure 6) are concentrated in a few 
(approximately two) "response biases'', whereas the errors in the identification of 
post-vocalic consonants (VC in figure 6) spread out over a large number of response 
categories. 

Van Son and Pols (1995) found a consistent difference in error rate between tokens 
containing accented and tokens containing unaccented vowels. This difference can be 
seen, more or less, in figure 6, where the error rates for the unaccented tokens (open 
symbols) are generally higher than the error rates for the accented tokens (filled 
symbols). Van Son and Po ls (1995) showed that this difference in error rate was 
consistent and statistically significant. The error differences between the accented and 
unaccented tokens show a difference between vowel identification and consonant 
identification. For the identification of the post-vocalic consonants (VC) this is to be 
expected, the error dispersion increases with the error rate, so if the unaccented tokens 
induce more errors, it is to be expected that these "extra" errors are different. For the 
identification of the pre-vocalic consonants (CV), the high error difference indicates 
that the fixed error dispersion for accented and unaccented tokens are the result of 
different sets of incorrect responses. 

Combined, the results of this analysis indicates that there are differences between 
the identification of pre-vocalic and post-vocalic consonants. It seems that the patterns 
of identification errors of pre-vocalic consonants are more like those of vowels with 
respect to the number of error categories, and more like those of post-vocalic 
consonants with respect to the differences between accented and unaccented tokens. 
In their paper, Van Son and Po ls (1995) do indeed conclude that there is a ( cor-) 
relation between the identification errors in pre-vocalic consonants and vowels, but 
not between post-vocalic consonants and vowels. They also find that the differences 
between accented and unaccented tokens are different for vowel identification and 
consonant identification. 

Several studies compared identification results for vowels presented with and 
without their orig!nal, syllabic. context. Both Huang (1991) and Kuwabara (1985) 
published confusion matrices that are relevant to this question. These are used here. 
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(isolated) Vowel (0) for 4 speakers. Kuwabara (.!285): Trisyllabic VVV sequences 
(ii) versus the excised, medial Vowel in isolation (LJ), 4 speakers pooled. Right panel: 
Error difference between presentation with and without the original syllabic context. 

From both studies it can be concluded that vowels presented in context (filled 
symbols) are identified better than those presented in isolation (open symbols). The 
range of error rates is large and clearly separates the two conditions in each 
experiment. At the same time, the error dispersions for the two conditions overlap. It 
seems that the increase in the error rate caused by the removal of the context only 
strengthens existing errors (or response biases), and does not introduce new errors. 
This idea is supported by the error differences which are quite small (figure 7, right­
hand panel, compare with figures 6 and 4 and be aware of the differences in vertical 
scale). Inspection of the confusion matrices of Huang and Kuwabara confirms this 
picture. There is a strong overlap of identification errors between presentation of 
vowels in context and in isolation. 

6.3 Vowel reduction 

Vowel reduction is an obvious field of research for testing the use of this new analysis 
technique. In figure 8, some results of the study of Van Bergem ( 1993) are presented. 
Van Bergem ( 1993) studied the influence of stress on vowel reduction in Dutch 
words. Identical syllables were recorded when pronounced in isolation, as the stressed 
and unstressed syllables of content words, and pronounced as function words. An 
English example would be: can, candy, canteen, can. The words were part of carrier 
sentences and were pronounced both with and without sentence accent (except for the 
syllables pronounced in isolation). For the actual identification experiment, the 
excised vowel realizations were presented in isolation. These experimental conditions 
were chosen to induce varying levels of vowel reduction. 

From figure 8, it can be seen that for all three speakers there is a strong correlation 
between the error dispersion and the error rate. Clearly, the different conditions in 
which the vowels were pronounced induced a varying amount of vowel reduction. 
This reduction translated into a large variation in error rates (- 15-75%) and error 
dispersion (- 1 --+). The strong correlation between error dispersion and error rate 
suggests that many "tiistinctive features of the vowel realizations are progressively 
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affected ("reduced") by vowel reduction, but in a consistent way. It also suggest that 
the error rate is the only relevant measure with respect to vowel reduction. 

6.4 Mixed speaker vowel identification 

As a final example, results are analysed from a series of experiments, aimed at 
determining whether listeners use context to normalize for speaker variation 
(Verbrugge et al., 1976; Strange et al., 1976). Tokens from several different speakers 
were presented in mixed order. In the two experimental "conditions", the type of 
context varied: none, full eve, and only /p Vp/, as well as the type of precursor 
sentence: maximal vowel space (/hi/ /ha/ /hu/), minimal vowel space (/ht/ /hre/ lhA/), 
and "natural" precursor sentences (figure 9). 

Despite the small number of points available, some interesting differences between 
the conditions can be seen. The vowels and syllables presented in isolation (open 
circles, figure 9) give the familiar picture of increasing error dispersion with 
increasing error rates (the correlation is not statistically significant) that signifies 
"general confusion" (figure 2). However, the syllables presented in a sentence context 
show a completely different picture. One point, the /p Vp/ syllable presented in a 
natural sentence context combines a markedly increased error rate with a lower error 
dispersion. From the discussion of figure 2, it is known that this is the hallmark of a 
strong response bias superimposed on a background of "random" errors. Verbrugge et 
al. ( 197 6) do reach the same conclusion from a close inspection of the response data. 

7. Discussion and conclusions 

In the previous sections the results of several studies were re-analysed using the 
relation between the error dispersion and the error rate. These studies were not 
designed to be analysed this \vay so they serve mainly as an illustration of the 
potential use of this technique. I do not intent a re-interpretation of their results. 
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However, it is clear that the plots of error dispersion versus error rate can help a lot in 
determining whether experimental conditions do make a difference for identification 
(figure 4 ). Furthermore, the strength and direction of the correlation can indeed 
suggest what kind of process underlies the changes in the responses (figures 6, 7, 8, 
and 9). It was also demonstrated that conditions that elicit comparable error rates and 
error dispersion can sometimes be distinguished because of the large differences in 
the actual incorrect responses observed (figures 4 and 6). The reverse was also found, 
where large differences in error rates were based on the same type of errors (figure 7). 

Therefore, it can be concluded that the error dispersion, d, is a meaningful measure 
of the number of distinct errors per stimulus or response (cf., perplexity). The error 
dispersion can separate cases for which the error rate alone is insufficient. Combined 
with the error rate, it also can suggest the kind of processes that underlie the 
differences in responses. 

Furthermore, the error difference, 8, quantifies the ( dis-)similarity of stimuli and 
conditions. It  is useful to assess whether there are differences in the pattern of 
responses, independent of any differences in error rate or error dispersion. 
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