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Abstract

In this paper, we will discussa number of aspeds related to the probabili stic orderings of
constraints. The developed model is referred to as Probabili stic Ranking Optimisation
(PRO). The treament of ranking in Optimality Theory is taken as a starting point, but the
emphasis here will be on the mathematicd properties of ranking solutions and the
connedion with adaptive and sequential leaning. While in Optimality Theory constraints
are (linealy) ranked along a one-dimensional continuum, the aurrent exposition is not
constrained to a one-dimensional continuum, but can be gplied in a more general setting.
A relation between the leanability of constraints on the one hand and aspeds of graph
theory on the other is established. The resulting PRO model enables to understand the
modelli ng power of ranking in terms of the number and structure of probability properties
that have to be fulfill ed.

1 Introduction

This paper deds with orderings, and more spedficdly, a probabili stic model for
orderings. The model ams at a description d observed arderings of objeds or events.
Asthefirst example, we aonsider the foll owing morning adivities (example 1):

‘a =‘wakeup

‘b’ = ‘take ashower’
‘c’ =‘ed bred’

‘d’ = ‘brush tegh’

‘e =‘gotowork’

Eadh o these adivities is denoted by a symbal. The ordering of these adivities on
five working days can be represented by alist:

L ={"'abcde’, ‘adode’, ‘adbce, ‘adcbe’, ‘abede’}

In this form, L just describes five working days, but L can also describe the adivities
over alonger time span, by e.g. alotting probabiliti es to ead o its elements. In the
latter probabili stic interpretation, we may conclude that adion ‘a and ‘€’ are ‘likely’
to be the first and last adion, respedively, while the ordering of remaining adions is
lesswell speafied and may adualy differ from day to day.
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The ordering of the adivities along atime ais is total, which means that on eath
day, eat adivity ‘x’ is Smultaneous with itself, any two adivities ‘x’ and 'y’ are
always comparable in the sense that ‘x’ occurs ealier than ‘y’, smultaneous with ‘y’,
or later than ‘'y’, and there is transitivity: if ‘X’ isealier than 'y’ and 'y’ isealier than
‘7, then ‘X’ is ealier than ‘Z'. In the example @owe, al adivities on any day are
comparable with resped to their (time) ordering.

The symbds ‘a, ‘b’, ... may aso refer to transformations, ading on an ohjed,
rather than to adivities. For example, when this objed is a phoretic-phondogicd
representation d a pronurciation, a possble interpretation d four symbads reals
(example 2):

a =‘devoicefina obstruent if voiced’

‘b’ = ‘diphthongize vowel in final syllable

‘C’ =‘reduce penultimate syll able’

‘d ="apply vowel harmony in penultimate and final syllable’

The gplicaion d one or more adions on a cetain representation will alter this
representation into another one. This resulting representation wually depends on the
ordering of the chasen adions. In general, many possbly different outcomes can be
generated from one inpu representation, by chocsing ancther ordering of these
transformations. The following example shows the dfed of the switch o two
transformations on the third singular form of ‘praten’ (‘talk’) en ‘raden’ (‘ guess) in
Dutch.

Degemination: Delete one of two identicd consonants.
Devoicing: Devoice a olstruent (in the coda).

Underlying representation:/pract+t/ frad+t/
Devoicing [prat+t] [rat+t]
Degemination [prat] [rat]

The reverse ordering of these @nstraints produces a different result (which is
incorred, at least for Dutch):

Degemination [prat] [racd+t]
Devoicing [prat] [rat+t]

This dows that a corred ordering of the transformations is esential to oltain
(explain, predict) the observed phondogicd surfaceforms.

If we asume that it is pasgble to figure out, given an ouput representation, the
ordering in which transformations have been applied to the underlying representation
to oltain the output representation, then we obtain a mapping from the output
‘surface representation to a sequence of symbols™. Asaresult, thelist L ‘encodes’ the
probabili stic structure in the strean of incoming representations in terms of the

! This is a substantial assumption. It can be related to the ideathat ead adion can be modelled as a
transducer that maps the input representation to a sequence of ‘marks indicaing the presence or
absence of a mismatch between the representation and the adion. When certain restrictions are met,
ranking models can be interpreted as regular relations, which would simplify this mapping (seeFrank &
Satta, 1998.
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transformations. If we asume that for ead inpu representation all transformations
must be used in some order, the ordering is again total.

A dightly different interpretation d the symbols deds with properties or
constraints rather than with adions, such asin (example 3):

‘the final obstruent is unvdced’
‘in the final syllable the vowel islong’
‘1

‘a
lb!
‘c he penultimate syllable is reduced’

One can make several types of generalisations. One such generalisation is where the
ordering is partia rather than total. Example 4:

‘a =‘wakeup

‘b’ =‘take ashower’
‘'c’ = ‘take abath’
‘d =‘ed bread’

‘e ='gotowork’

L ={‘abde, ‘adl, ‘aal’, ‘adb, ‘ab’}

In this list, ‘b’ and ‘'c’ seem mutualy exclusive and therefore caana be mutualy
ranked (alternatively, it makes no sense to try to rank them, or there ae noinpu data
avail able in which they are ranked). Furthermore, ‘d’ and ‘€’ is optional, and there
seans atendency to first do‘a and later ‘b’ or ‘c’, while the ranking of ‘d’ and ‘€’ is
not clea. Wewill seebelow how we can ded with this stuation d partial ordering.

Terminology

In the examples mentioned abowve, we have been deding with the ordering d adions,
properties, and transformations. To uriform the terminology, we will use the term
‘constraint’ in the sequel of this paper for the objeds to be ordered on the basis of
inpu data.

2 Learningthe ordering of constraints

The question nawv is, hov the onstraints can be organized in a hierarchy or
‘grammar’ such that this hierarchy (e.g. a linea ranking) optimaly refleds the
observed orderings such as in the lists L abowve. The task for the leaner (the
agorithm) is to deduce agrammar that explains the observed ardering in the inpu
data.

In Optimality Theory (OT), approades are described to lean this ranking based on
incoming data (see eg. Kager, 1999. In OT, it is asaumed that a (fixed) set of
congtraints is already available to the leaner. In some of the gproades, ore
stipulates that all possble output forms — na only the ones that are observed — are
avail able to the leaner, together with violation marks for thase anstraints that render
them sub-optimal. Whether such sub-optimal forms are avail able for the leaner, even
if they are not presented as such, isatopic of theoreticd debatein OT.
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In this paper, we will not go into detail on this debate. We will just assume that
only the data that are presented are available as learning data, and will focus on and
discuss some of the mathematical properties of ranking solutions. Next, we will deal
with the question of how these solutions can be found by a sequential learning
algorithm, and point to a relation with graph theoretical notions. The result of this
exercise is a modd that will be referred to as Probabilistic Ranking Optimisation
(PRO).

3 Towardsaformal approach

We will abstract away from the interpretation of the symbols, and concentrate on the
structure of the list L in terms of the statistical properties of the ordering of the
constraints. So L can be either a finite list of string data, or be extended with
probabilities allotted to each string, or can be an infinite stream of data. It is further
assumed that the ordering of the constraints can be total or partial. We mention a
number of ways to describe the structure of L.

1. By (probabilistic) grammars. By interpreting L as a language with
sentences of words ‘a, ‘b’, etc., L can be described or approximated by a
finite state grammar (FSG), a context-free grammar (CFG), or probabili stic
versions of these grammars (eg. Charniak, 1993. A large number of
established agorithms exist to construct the grammar and to updie the
probabiliti es of the grammar rules onthe basis of L. It will be dea that the set
of grammar rules that represents L may become rather cumbersome. For lists
with a more complicaed ardering structure, the rules become s trivial as the
list L itself, for example the rule rewrite(S, ‘abde’ | ‘add’ | ‘aed’ | ‘adb’ | ‘ab’)
or a probabili stic version, in the cae of example 4. This rule states that the
formal sentence symbad S can be rewritten into ore of the five strings. The
grammar approad is useful to fador out groups of constraints that behave &
‘mutualy digoint’. We will address the probabilistic grammar approach
below.

2. By (probabili stic) ordering. Probabili stic ordering (ranking) is used in
recant developments in OT (for example in the Gradual Leaning Algorithm
(GLA), seeBoersma & Hayes, 200). The basic ideais, for a totally ordered
ranking system, to have eab adion‘x’ assciated with alocaion pas(‘x’) ona
straight line, such that pos(‘a) < pos(‘b’) means that ‘a is likely to occur
before ‘b’. The larger the distance between pos(‘a) and pos(‘b’), the more
likely ‘@ occurs before ‘b’, and reverse: if pos(‘a) > pos(‘b’), ‘@ islikely to
happen after ‘b’. In the sequel, we will follow this approach and further
elaborate onit. In this paper, probabili stic ranking will be notated by the rule
rewrite(S, probabilistic ordering{‘a’, ..., ‘Z’}), meaning a rewrite of the
formal sentence symbad S into a probabili stic string using the symbals ‘a to
‘Z’, i.e. an probabili stic ordering on the wnstraints ‘a’ to ‘Z'. The statistics of
the ordering evidently depends on the model parameters sich as pos(‘a), bu
these parameters will be omitted here not to burden the notation.

One of the numericd models that implements probabili stic ranking makes use of
probability distributions, such that ead adion ‘X’ corresponds with some probability
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distribution D (in general, D will depend onx). D is a probability distribution onthe
set of red numbers. The probability that ‘a occurs before ‘b’ — henceforth denoted
P(a <'b’) —isthen modelled as

P(a <'b) =P(Xa <Xy | Xz and X stochastic variables
asociated with Dy and D-yy, resp.) Q)

This definition makes snse for all sorts of probability distributions D. The two
distributions D and Dy need na be of the same *shape’ or from the same family of
distributions. When the two dstributions do nd overlap, e.g. when D-4 is entirely
locaed at the left side of Dy, then P('a < ‘b’) = 1, which means that ‘a always
occurs before ‘b’ (‘@ aways outranks ‘b’). The involved probability evaluation takes
a paticularly simple form in the cae where the distributions have a simple
mathematica form, such as atriangle shape, alapladan o a gaussan. The dhoicefor
a particular form for the distributions can be based onadditional knowledge &ou an
underlying evaluation model, or on arguments related to mathematicd elegance For
example, in the cae of gaussans, the probability P(‘a < ‘b’) will never completely
vanish, na will it ever be exadly equal to 1, poperties which may be dtradive from
aprobabili stic point of view and are often essential for leaning.

In the sequel, we will use gaussan dstributions to show a number of properties of
probabili stic ranking. In the gaussan case, the probability P('a < ‘b’) can be
expressd just in terms of two means and two standard deviations. It can easily be
shown that, if the gaussan dstribution G is gedfied by its mean i and standard
deviation o'y, €g. (1) is smplified to eg. (2):

P(‘a <'b) = IN(-Wo), with
M= fa - o @)
0% =04 + 0y?, O pasitive or zero

where IN(X) denotes the integral from —infinity to x of the normal distribution.
Observe that IN(y) + IN(-y) =1 for al values of y. After reorganisation d eg. (2), eqg.
(24) follows:

(Fa - Hb) = Vo SAIL(Oa” + O°) (28)

inwhich y 4, denotesthe unique solution such that P(*a <‘b’) = IN(-ya). In the cae
where the varianceisfixed to 1, (2a) smplifiesto (2b):

(ea - Hp) = Vi SONH(2) (2b)

Observe that egs. (2) and (2a) also hdd in the more general case, in which the
distributions Dy are not necessarily gaussan. In such a general case, the relation
between y 4y and P('a < ‘b’) is different from the gaussan case. In the cae that D
vanishes nowhere (which is true for gaussans and many more distributions), the
constant y4y IS one-to-one related to the probability P(‘'a < ‘b’) via amore general
functionF:

PCa <'0) =F(-yan)

IFA Proceealings 24, 2001 129



in which F only depends onthe general type of distributions.

Obviously, by varying the model parameters in the distributions, ore can change
the mismatch between the observed orderings in the incoming data in L on the one
hand, and the predicted arderings (by using eq. 1) on the other. For example, if ‘a is
aways foundto ourank ‘b’, a modd with py < Py will yield a better match than a
model in which pz > Wy, For a given L, spedfic dhoices of the distributions will
yield an oggimal match. The existence of such ‘optimal’ solutions when gaussans are
used, and the invalved leanability aspeds, will be the focus of the next sedion.

4 Existence of rankings

Two constraints

In this dion, we focus on the question whether ranking solutions exist in terms of
means and standard deviations for an arbitrary incoming data L. We will distinguish
two probabilistic ranking optimisation models. PRO-1 in which every D is
charaderized by one parameter (the mean), and PRO-2, in which every Dy has two
parameters (mean and variance).

We will start by examining the simplest nonttrivial case in which we have only 2
constraints to be ranked. In this case, there is only one probability, viz. P(‘a <'b’), to
be modelled. In PRO-2, the patential solution spaceis four-dimensional, since there
are two constraints, ead having two model parameters. The modelling of P(‘a < ‘b’)
yields a nonrivial (nontlinea) relation between the four parameters { pa, 022, Moy,
oy}, which is pedfied by eq. (2a). This leaves three degree of freedom in the
solution space Among these four parameters there ae two additional but trivial
relations, ore related to a shift of all the means and the seacond related to a @mmon
scaling fador for the means and standard deviations. Taking away also these two
trivial degrees of freadom, ore ‘genuine’ degree of freedom is left, which indicates
that, if we use means and variances for eat gaussan, we end up with a one-
dimensional model space This means that there is not a single solution bu a one-
dimensional family of solutions. the solution in PRO-2 is underspedfied by just
spedfying P(‘a < ‘b’). The result means that, if any solution exists, the genuine
solution space aoundthat solutionin general is one-dimensional.

The value of the dimension (viz. 1) itself isindependent of the adua value of P(*a
<'DP’). Thisinturn means that atracking of the ‘recent’ statistics in the inpu datais
possble but underspedfied as well, since eab neighbouing solution is also
embedded in its own solution spaceof dimension 1.

This ‘freedom’ in the solution space ca be used to pu more restrictions on the
solution —if one alditional restrictionis impaosed, the solution becomes unique. In the
Gradua Leaning Algorithm (GLA), Boersma & Hayes (200]) fix one of the means
and set both variances equal to ore, thereby reducing the solution spaceto dmension
0 (i.e. exadly one solution, if it exists). This is adualy the solution acwrding to
PRO-1. In summary, it follows that in the two-constraints case, a ranking solution
(with or withou fixed standard deviations) aways exists, the solution in GLA or
PRO-1 being unique.

Three constraints
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PRO-2. When more than two constraints are involved, things get dlightly more
difficult. In the cae of three onstraints ‘a’, ‘b’, ‘¢’ that are to be totaly ordered, the
six parameters {ta, 022, Kb, Ob’y Mo, O¢?} are determined by up to three (3*(3-
1)/2) relations associated to the three observed probabilities P('a < *b’), P('b’ <*C)
and P("a <'C). If yay ischosen such that P('a < ‘b’) = IN(-yay), and similarly for
Yoo andy 4 (these parameters y are now uniquely determined), we obtain a system of
three gualiti es, eat of them fully comparable with eq. (2a) but now correspondng to
therelation between*'a and‘b’, ‘b’ and‘c’, and‘a and‘c’, respedively:

(Fa - Hb) = Vo SAIH(Oa” + Oy°)
(Hb - Be) = Ve SAM(Ob” + 0:c?) 3)
(Fe - Wa) = Yea SAMH(0:c* + 0°%)

These threerelations leave three (6 — 3 degrees of freadom. As before, the remaining
three dimensions include two trivial degrees of freedom: a shift of the means and a
scding fador for means and standard deviations, so there is only one genuine degree
of freedom left.

In this case, however, there is not aways an exad solution in terms of {pa, O-a2,
Wy, Op’, e, O¢?}. That means that there is a ombination for P(‘a < ‘b)), P(‘b’ <
‘') andP(*a <'c’) that canna be modelled by this probabili stic ranking approad. It
can be shown that an exad solution exists only in the foll owing two cases (a) and (b):
(a) when the inner product

((Yao Yoo Yeca)', P) (4)

takes different signsontheset {P} ={(110’,(1 07, (01 J'}. Inwords: within the
set of threenumbers{yay + Vbe, Yar + Yca, Yoo + Yea), @ least one must be strictly
positive and at least one must be strictly negative, in order to have an exad solution
for the ranking with the spedfied P("fa <'b’), P(‘'b’ <‘c’),andP(‘a <‘c).

(b) when all y's are zero, which means no preferencefor any symbd, i.e. P('a < ‘b’)
= P('b <‘Cc) = P(a < ‘c) = %. Moduo shift and scding, the solution spaceis
esentialy two-dimensional.

PRO-1. In the cae when al variances are fixed to 1 in the 3-constraints case, it
follows from eqg. (3) that there is no solution udesscoincidentally Va + Ybe = Vac
(or equivadently yay + Ve + Yea = 0). In that case, the genuine solution spacehas
dimension O(apart from atrivia shift, all means are determined). In general however,
such an equation between the y's does not hald, since P(‘a < ‘c’) is not spedfied by
P(a <'b) andP(‘b’ <*C’). Thiscan be eaily inferred from table |. The table shows
that P('a <‘C) =#(‘a <'C)/|L| can take ay value between Oand P('a’ <*'b’) + P(‘b’
<*'C’), by appropriately defining the probabiliti es of the six strings ‘abc’, ..., ‘cba.

It follows that the probabili stic ranking using single gaussans per symbad is not
able to modd all possble rankings between three symbas when the variances are
forced to 1. In the gradual leaning algorithm (GLA) described by Boersma & Hayes
(2001, dl variances are dosen equal to unty, despite the invoved loss in
mathematica modelli ng power, and they give an argument to doso.

IFA Procealings 24, 2001 131



Table . By appropriately manipulation of the probabiliti es of the strings *abc’ to ‘cba in the input,
P(‘a <‘c’) cantake ahitrary valuesbetween O and P(‘a <'b’) + P(‘'b’ <‘C’).

#'a<'b) #('b'<'c) #'a<'c)
abc * * *
acb * - *
bac - * *
bca - * -
cab * - -
cha - - -

Boersma & Hayes relate the variance of a @nstraint to a property of the (human)
evaluation system, rather than to the nstraint itself. Their argument is that variances
refled the noise inherent to the evaluation of the feaures that are inpu for the
probability distributions, and sincethe evaluation phase preceales the dedsion, it must
be the same for ead constraint.

In this paper, we do nd adopt this view. Although part of the varianceis related to
evaluation ndse, we do nd conclude that all variances must therefore be equal. More
predsely, evaluation nase refers to the fad that repeaed presentation o the same
stimulus yields different perceptual eff eds (among the extensive literature see Ashby,
1992 Ashby & Alfonso-Reese, 1999, rather than to dred claims abou the shape of
statisticad distributions. Furthermore, with equal covariance matrices per class the
boundxries between al classes would be linea, which is in general an unrecessary
strong assumptionin classfication theory.

In addtion, nose plays an esentia role in the theory on dedsion rules and
perceptual representations (Maddax & Bogdanov, 2000, and it is a priori possble
that a cetain constraint is more susceptible to ndse than ancther constraint. We
therefore take the position that the variance can be regarded as a genuine, intrinsic
property of a constraint, which may include noise dfeds from the evaluation channdl,
but which eventually fully spedfies its vulnerability among neighbouing constraints.
We however agree that, in the PRO-2 model, the variances are ‘overloaded’ in the
sense that they are used to bah cover the intrinsic variationin the inpu data & well as
to model anoisy evaluation system.

Unequal variances are esentia if one wants to model

L ={'bac, ‘abc’, ‘ady’}

inwhich *a” aways outranks ‘c’. (Boersma & Hayes provide asimilar example). With
diff erent variances, an exad modelli ng of thislist L ispossble.

But even with unequal variances, the probabilistic model is not capable of
explaining the statistics of any list L with three ©nstraints. For example, if L takes a
cyclic form {‘abc’, ‘bcd, ‘ca’} (with probability 1/3 for ead element), the solution
isdegenerated to -y = iy = o = @ @nstant. L isonly asubset of patterns L’ that are
explained by the probabili stic ranking:

L' ={"abc, ‘bcd, ‘ca, ‘ady’, ‘bac, ‘cha’}
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with equal probability (1/6) for eat of the strings. So the probability model accepts
many more patterns than it has observed. Mathematicdly, this ranking problem is
solvable when the probabili stic model would be extended to allow the ranking of
strings with urequal lengths, such as P('ab’ < c), P(‘'a < ‘cb’), etc. The gradua
leaning agorithm (GLA) and the PRO models, hovever, do na take into acourt
these higher-order probabiliti es. (In sedion 9,the badkground d this‘cyclic’ situation
is explained in a more geometricd way.)

We aain emphasize that the present treament deds with the existence of an exact
solution. In pradice, ‘nealy optimal’ solutions will exist in many cases. These nealy
optimal solutions are eaiest to derive in the PRO-1 model. For example, in the cae
of three onstraints only, we have to solve the foll owing set of equations (5):

(Kea - p) = Yar SArt(2)
(Kb - Heer) = Yoo SOrt(2) ©)
(e - Ha) = Yeca SArt(2)

where the y's are fully determined by the observed probabiliti es. If their sum equals O,
the PRO-1 model can exadly match the observed ranking probabiliti es. However, if
the sum is not exadly equal to O, the model can orly approximate the observed
patterns, and in such a cae it is essntial to use apredse definition d ‘ approximate’.
The literature on ogimisation povides numerous methods to seach a modd that
maximizes a ‘match’ with the data (e.g. by optimising the likelihood d the data, by
least squares minimization, a by expedation maximisation), bu the doice of the
optimisation is also a matter of elegance and feasibility with resped to the targeted
applicaion danain (more &ou thisin sedion 6.

Four and more constraints

PRO-2. In case of four constraints ‘a, ‘b’, ‘¢’ and ‘d’ that are totally ordered, the 6
probabilities P(‘'x’ < ‘y’) lead to 6 equations of the same type & eg. (2a). The number
of variables is 8, which means that the remaining dimension is 2 (which include the
shift and the scding). So, in esence, there is just one solution, if it exists. In the same
way as in the threeconstraint case, it is possble to give anumber of necessary
condtions for the existence of the solution, if one mnsiders the cae of total ordering.
These condtions are based onthe 4 dfferent cycles of length 3in the cmplete graph
K4 with 4 vertices and 6edges. If the vertices of this graph are labelled by ‘&, ‘b, ‘¢
and ‘d, the four 3-cyclesread {‘a, ‘b’, ‘'c’}, {‘a, ‘b, ‘d}, {‘a, ‘c, 'd}, and {'b’,
‘'c’, ‘d'} (eat to be considered cyclicdly). Within ead of these subsystems, a set of
equations hold similar to eg. (3). When a solution d the entire system K, exists, it
must at least hald onthe 4 3-cycles, i.e. the four associated equations (4) must eat
admit a solution.

PRO-1. The six probabilities P(‘x’ < ‘y’) lead to 6 equations of the same type & eq.
(2b). There ae 4 freeparameters, which have to satisfy 6 equations, which in genera
means that there is no solution pessble. Solutions exist in spedal cases, where yy, +
Yyz *+ Yaoc =0, where{X, y, z} run ower al triangle vertices in the cmplete graph Ka.
In that case, thereis only one genuine solution.

Table 2. Overview of the results for PRO-1 (top) and PRO-2 (bottom). The asumed ranking is
totally ordered.
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n #var  #condit. #dim  genuine solution exists?
2 2 1 0 unique

N>2 N N(N-1)/2 <0 speda casesonly

n #var  #condit. #dim  genuine solution exists?
2 4 1 1 1-dim

3 6 3 1 1-dim

4 8 6 0 unique

N>4 2N N(N-1)/2 <0 speda casesonly

The resultsfor totally ranked systems are summarized in Table 2.

When N is large enough, the dimension d the solution space beammes negative,
which implies that a general exad solution dces not exist. However, a particular
exad ranking solution may exist for spedal chaoices for the probabilities P('x’ <'y’).
This exad ranking solution turns into an approximate solution when the probabiliti es
deviate from the spedal setting. In sedion 9we will discussthis ‘approximate’ casein
more detail .

Partial solutions

PRO-2. In general, when N constraints have to be totally ranked, then N(N-1)/2
equalities of the form of equation (2) have to be fulfilled. Each of these egudliti es
subtrads one degree of freedom from the solution space (of which the dimension is
2N, twice the number of constraints, in the cae of no ranking equations at all). If the
ranking is partial rather than total, then we do nd have the full number of N(N-1)/2
equalities but just M of them (where M < N(N-1)/2).Taking into acourt the two
trivial degrees of freedom, we have for the eventua genuine dimension (dim) of the
solution space

dim=2N-M -2 (6)

A nonnegative value of dim does not guarantee the existence of a solution. It only
means that, if a solution exists, then the solution space @ound the solution hes
dimension dm. Necessary conditions for the existence of solutions are awumbersome
to produce seebelow.

As an example, we onsider the cae in which four constraints ‘a to ‘d’ are to be
ranked where only the probabiliti es along one 4-cycle {‘a, ‘b, ‘c’, ‘d'} in K4 are
spedfied, i.e. we only know P('a <‘b’), P('b’ <*c), P('c <‘d),andP('d <‘&). In
thiscaseN =4 andM =4, s0

dim=2%_—4_2=2

which means that the genuine solution spacehas dimension 2.1f additionally P(‘b’ <
‘d) andP(‘a <‘c’) are spedfied, the dimension reduces to 0, as we have drealy seen
before.

PRO-1. In case of N constraints, the genuine solution space withou any impased
equations of the form (2b) has dimension N — 1. Eadch equation d the form (2b)
deaeases the dimension by 1. However, by doing so, we discourt too much for
cycles, andin arder to corred that we must increase the dimension by 1 for every face
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except for the default ‘unbouned faceé when embedding G in the plane (seesedion 7
for detail s). With M equations to be satisfied, the resulting genuine dimension reads

dm =N-1-M+(F-1
=F-M+N-2 @)

Optional constraints

A speda case ocaurs if we have optional constraints in the data. We will briefly
discussthis stuation withou going into detail here. In example (4), we ded with 5
symbals of which ‘b’ and ‘¢’ are incomparable, and in which ‘c’, ‘d" and ‘€ are
optional (seefigure 1).

L = {“abde’, ‘acd’, “aed’, ‘adb’, ‘ab’}

Figure 1. Rankingof five constraints, ‘b’ and ‘¢’ mutually independent.

The top in figure 1 shows the lattice a&ciated to example 4. The five constraints
do nd move dong oreline, bu ‘b’ and ‘c’ move independently —i.e. without mutual
ranking limitations — along paral el paths. The structure of the latticefollows from the
faa that all symbals can be simultaneously in an element of L, except for ‘b’ and ‘c’.
That means, that of the 10 passble relations (smilar to eq. 2, oy 9 are dfedive
(figure 1 batom right). But in this example, we have to take optiondlity into acourt,
since‘b’ and‘c’ are not mandatory. This can be modelled as foll ows (compare &. 1):

P(a <'D) = P(X:z <X« | X:g and X:p stochastic variables
asociated with Dy and Dy | both ‘@ and ‘b’ are produced)
*Pra & 'b) )

where P(‘a’ & ‘b’) dencte the apriori probability of the goplicability of both the

constraints ‘@ and ‘b’ in an arbitrary inpu datum. So, the probability of ‘a
outranking ‘b’ now has beaome condtionally dependent onthe gplicability of ‘a and
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‘b’. The probability P(a & ‘b’) can be trained from the inpu data. (The problem of
estimating these probabiliti es resembles the estimation d hidden parametersin hidden
markov modelling, which is part of standard missng data theory, in which the
statistics of not diredly observable states is dedt with.) Further simplifying, one
might reduce the probability P(‘'x’ & ‘y’) into two fadors P(‘x’) and P(y"),
representing the probabiliti es of observing the individual constraints ‘x’ and ‘y’ in the
inpu. Evidently, such afadorisationis only corred in the cae of independence of the
ocaurrencesof ‘x” and‘y’.

In OT, ore has introduwced the nation d ‘strata, i.e. colledions of constraints
withou internal ranking, to ded with incomparable @nstraints. The difference
between the nation d * stratum’ and the present treament is that, although ‘b’ and ‘¢’
are mutually incomparable (in example 4), bah constraints can be cmpared e.g. to
‘a, with posshly different outcomes. So, athough ‘b’ and ‘¢’ canna be mutually
compared, their ranking behaviour towards a third constraint is diff erent.

5 Towards a combination of a probabilistic grammar and
probabilistic ranking

So far, we mnsidered ranking of symbadls in a lattice of which the structure is
determined by the set of equations (3). Each o these equations is based on a
constraint-to-constraint comparison. In certain cases, this is evidently nat a satisfying
way to describe the structure of L. For example, consider the two lists

L, ={"abcd’, ‘badd’, ‘abdc’, ‘abdc’, ‘abdc’}
L, ={"'cded, ‘abcde, ‘cdedy’, ‘abcde’, ‘abcde’'}

The structure of L; can be described (to avery good approximation) by atotal ranking
of the four constraints, i.e. by agrammar

rewrite(S, probabili stic ordering {*a, ‘b’, ‘c’, ‘d’})

but it makes Ense to consider an alternative description such as (A and B denating
nonrterminals):

rewrite(S, ‘A B)
rewrite(A, probabili stic ordering {*a’, ‘b’'})
rewrite(B, probabili stic ordering {‘c’, ‘d'})

L, canna be properly described by rewrite(S, probabili stic ordering {*a’, ‘b, ‘c’, ‘d’,
‘e'}) since any of such rankings would incorredly explain ‘cabde’, ‘cdabe’ or ‘acdely’
with pasitive chance The use of a CFG yields a arrea description, as follows:

rewrite(S, probabilistic ordering {*A’, ‘B’})
rewrite(A, ‘ab’)
rewrite(B, ‘cde)

From these examples, it follows that a combined use of a probabili stic finite state

grammar (PFSG) or a probabili stic context free grammar (PCFG) and probabili stic
ranking can provide apowerful tod to describe the statisticd propertiesin L. All the
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involved probabiliti es can be leaned from data: the probabiliti es in a PCFG can be
trained onthe basis of the datain L by the inside-outside algorithm (Charniak, 1993,
whil e the parameters of the probabili stic ordering can be leaned by GLA or asimilar
soft-ranking algorithm.

This type of combined description leads to the question what the differences are
between the foll owing two descriptions D; and Da:

Di:

rewrite(S, probabili stic ordering {*A’, ‘B", ‘C’, ..."Z’})
rewrite(A, probabili stic ordering {‘ay’, ..., ‘ana’})
rewrite(B, probabili stic ordering {‘bs’, ..., ‘bne'})

}.e.zwrite(Z, probabili stic ordering {*z1’, ..., 'ZnZ'})
and

D,:
rewrite(S, probabili stic ordering{‘a,’, ‘&', ‘ana, ‘b1’, ..., ‘ZnZ })

The answer is, that if the constraint groups {*a’} and {'b’} do nat interlace(so, all
‘asrank ou al ‘b’s, or viceversa), andidem for all other combinations of constraint
groups, then D, can be put in the form of D;. The outranking is never strict sincethere
might always be asmall probability — depending on the form of the probability
distributions used — d observing an extremely rare ordering, so theoreticdly the
digunction d constraint groups is never entirely satisfied. However, in these caes, D1
and D, can be practically equivaent. Conversely, if in Dy therule

rewrite(S, probabili stic ordering {*A’, ‘B", ‘C’, ..."Z’})

pradicdly outputs afixed ordering of ‘A’, ...,’Z’, then D1 can be put in the form of
D,. In general, howvever, D; and D, modd different types of statistics in L. The
training of D, can be performed via the soft-ranking agorithm, whil e the training of
D; invalves anesting of soft rankings.

6 Learnability

Suppse aset of inpu ‘surfacé forms and a set of constraints are given. What
strategies can the leaner use to dscover the proper ranking of the constraints? The
study abou leanability of ranking is initiated by Tesar & Smolensky (1993. Their
hard-ranking leaning algorithm (reaursive demotion) demotes rankings in such a way
that the highly ranked constraints beamme less violated. For ead underlying
representation, a ‘modue’ GEN generates an infinite number of output surface
redisations (candidates). These candidates are evaluated against a set of constraints
(by the modue EVAL). In the standard OT, constraints are assumed to be universal
(language-independent) and spedfied by some universal grammar. Constraints are
ranked in a language-spedfic hierarchy (a grammar). The winning ranking is the one
with the least serious violations with resped to the data. The ultimate goal is to
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discover a general (universal) set of constraints ared by al anguages. The question
whether auniversal set of constraints existsis not settled.

The hard-ranking algorithm demonstrates that it is possble to deduce rankings of
constraints on the basis of incoming surface data. It is based on a number of
asuumptions. First, it is asuumed that al data presented to the leaner are
grammaticaly corred. Also it is aleged that the leaning algorithm can access the
corred underlying representation, lesides the raw surface form: the hypothesised
underlying forms are to be deduced from the surface form and the cnstraint
hierarchy. The observed violations produce the aucia information for updating the
constraint ranking, since @nstraints that are violated must be strictly outranked by
some other constraint. About the totality of the ranking, Prince & Smolensky (1993, p.
51) observethat thisis not an a priori assumption d OT.

The soft-ranking model implemented in e.g. the Gradual Leaning Algorithm
(GLA) shows that the probabilistic ranking of constraints is possble using the same
type of structured data. The initial state in most of these dgorithmsis one in which all
constraints are unranked with resped to ore another. Boersma (1997 has $own that
the GLA is able to refled the statistics foundin the training data, for a large number
of different phondogicd patterns.

Learnability from a mathematical viewpoint

We now consider leanability from a more mathematicd perspedive. In a
probabili stic ranking model, the locaions of the probability distributions gedfy the
probability of observing the strings ‘abcd’, ‘dcay’ etc. For example, if al four
distributions have equal means, al 24 4charader strings are equally probable (ead
having a probabilit y1/24), regardlessthe standard deviations. Andif g < iy < e <
Wq, ‘abed’ is preferred over all other orderings. So, by manipulating the distributions
(by atering the model parameters, i.e. the means and standard deviations), ore can
minimize the statistical mismatch between the predicted distribution o strings (on the
basis of the probabili stic model) on ore hand and the observed string distribution in
the list L on the other. This can be formulated as the optimisation d the likelihood
P(L | M) of observing L given the model M, where M = M(A) depends on a parameter
set (denoted by A). The maximum likelihood solutions can be foundin a number of
numericd ways, of which so-cdled Expedation Maximization (EM) algorithms are a
well-known family (e.g. Dempster et a., 1977 Lee & Gauvain, 199§. EM
algorithms, which are commonly used in the training of Hidden Markov Models in
automatic speed reaognition, consist of two steps (an E-step and a subsequent M-
step) which are iterated a number of times until convergence takes place In general,
EM algorithms have asequential variant in which the leaning data ae presented in
the form of a strean and the model parameters are updated after ead input datum so
asto optimise arunning maximum likelihoodcriterion. There is a massve anourt of
literature on adaptive leaning algorithms that update the model parameters for eat
incoming input datum such that some target function is minimized onthe long term.
The target function expresses the mismatch between the statistics generated by the
model and the observed ‘most recent’ statistics in the input stream (well documented
examples of such leaning algorithms are: sequential leaning, reinforcement learning,
Q-leaning, the Palo-algorithm; seeKeans & Vazirani, 1994 Greiner, 1996 Cowel et
a., 1996. Aswith al optimisation algorithms, there is no genera guaranteeto avoid
being stuck in alocd optimum.
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In principle, sequentia leaning agorithms gart with a random distribution and,
after a number of inpu data from the inpu stream, they ‘tune in’ on the adua
distribution in the stream. A number of leaning algorithms assume that it is possble
—at least in principle — to accessand updite all model parameters on the basis of one
inpu datum. Other leaning algorithms modify the model more locdly: only certain
parameters are updated per input datum. In the one-dimensional GLA, this means that
the ‘locd’ type of algorithms demote (= shift to the right) one or a few non-matching
distributions (‘violation), or promote the locaion d one or a few matching
distributions (‘ satisfadion’). Seen from the mathematica point of view, it is evident
that the ranking by e.g. soft-ranking algorithms can describe the recent statisticsin the
inpu, sincethat is a general property of an extensive family of leaning algorithms to
which soft-ranking algorithms — as far as they are interpreted as maximum likelihood
optimisation techniques — belong.

The question which type of leaning (soft-ranking, or other variants) appliesin a
catain case is a matter of the plausibility of a model embedding into a cetain
paradigm, rather than a matter of statisticd matching qualiti es alone. For example, for
isaues in phondogy, where issues concerning acquisition of phondogicd patterns
play arole, the structural complexity of the leaning algorithm is a matter of concern.
These ambedding isaues — which are related to interpretation o the model — are nat
addressed in this paper.

Speed of convergence to optimality.

Optimadlity is usually an asymptotic result, and so convergence speed itself is a poaly
defined measure. More interesting are the speed of convergenceto nea-optimality and
the shape of the learning curve. This leaning behaviour is gudied in a more general
setting which is cdled the Probably Approximately Corred (PAC) framework (e.g.
Hausder, 1990. The PAC framework takes as a starting point that a leaner is
equipped with a dass of possble dassfiers (eg. dedsion trees, or multiplayer
perceptrons). A number of labelled training instances is presented to the leaner; the
leaner uses these training data to identify a cetain spedfic dassfier from the given
class Ead clasgfier in the dasswill show an error (the probability to incorredly
clasgfy the inpu). For certain classes of clasgfiersit is possble to guaranteethat the
clasgfier found ly the leaner will have — with high probability — a small error. PAC
also provides information abou the minimal length of the leaning period in order to
have aprobabili stic guarantee on a cetain performance on a (independent) test set.
Optimisation algorithms ow in general atrade-off between the spead of training and
the performance on a test set. Ancther useful performance measure (known as regret)
is the expeded deaeese in performance on a test set, due to the exeaution d the
leaning algorithm instead of behaving optimally diredly from the start.

7 Relationswith graph theory

There eists an interesting relation between constraint ranking and graph theory. To
explain thisrelation, we need two concepts related to a graph, face and genus.

If a graph G is drawn on (‘embedded in’) a surface the V vertices and E edges
decompase the surfaceinto F paygona regions. The surface ca be the plane, the
sphere, atorus (the surfaceof adonut), etc. (the enbedding in aplane or in asphereis
nat esentiadly different). The surface ca aways be cosen such that there ae no
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ill egal crosgngs of edges (‘self-crosdngs) and furthermore that every regionis aface.
A faceis a region that is simply connected, i.e. it can be cntinuowly shrunk to a
single point withou leaving the surface As an example we @nsider the cmplete
graph K3, which consists of threevertices conneded by three @lges. Three elgesisthe
maximum number to conned three vertices, hence the aljedive ‘complete’. This
graph K3 embedded in the plane or the sphere has two faces: the ‘inside’ and the
‘outside’. The graph K4 embedded in the sphere has 4 faces (seefigure 2). The graph
K4 + K4 (the graph that consists of two graphs K, that are cnneded with ore single
edge) on the sphere has 7 faces. The complete graph Ks canna be enbedded in the
plane withou self-crossngs (in jargon: the graphis not planar), bu it can be properly
embedded onthe torusin which caseit has 5 faces (seefigure 3).

K, embedded in plane:
4 faces, 6 edges, 4 vertices

Figure 2. The mmplete graph K4 embedded in the plane (or on a sphere).

The genus of a graph, wually denoted by I, is the minimum number of ‘handes
attached to the sphere that are necessry to embed the graph withou any self-
crossngs. Graphs such as Kz and K4 can be drawn on the sphere (in the sphere)
withou self-crosgngs: both I'(K3) and I'(K,) are therefore equal to 0. Since the torus
isessentialy a sphere with just one ‘handle and the graph Ks can be drawn onatorus
withou self-crossngs, I'(Ks) = 1.

The number of comporents of a graphis (loosely spegking) the number of parts of
the graph that are not conreded with ore ancther. For example, the number of
comporents of the graph consisting of just k vertices is k. When the graph is
conreded, the number of comporents equals 1.

Let the graph G now be defined by the nstraints as the vertices and the imposed
comparability relations as the edges. Then the dimension d the genuine solution
spaceof the ranking problem in PRO-2 depends on the structure of G as follows. We
define the foll owing parameters (# denotes ‘number of’) :

#N: the number of verticesin G
#EC: the number of comporents of G, minus one

140 IFA Procealings 24, 2001



(i.e. the number of ‘ extra componrents))
#F. the number of faces of G
#E: the number of edges of G

Then the genuine dimension d the ranking solution reads:

dim =#N + #EC — #F — ' (G) (8)
In words, eg. (8) states the following. Every vertex (i.e. ead constraint) increases the
dimension by one. Every additional graph comporent also increases the dimension by
one. Contrary, every facereduces the dimension by one; and handles are penalized by
areduction d 2. In short:

Constraints and components facilitate solutions;
Faces and handles hamper solutions.

The equation (8) can be derived from Euler’s poyhedral equation. For a planar graph
this equation takes the simple form:

HF—HE+#HN =2

For a general, nonplanar not-conneded graph withou self-crossngs, one obtains
(e.g. Coxeter, 1969

#Hr—H#HE+#N =2 - T (G) + #EC 9
From eg. (9), it foll ows that,
#N —H#E — 2= — 2 (G) + #EC — #F
Combining this result with eg. (6), ore gets
dm=2#N—-#E—- 2
=#N + (#N - #E— 2
=#N — A (G) + #EC — #F
=#N + #EC — #F — I (G)
We give afew examples. G = K, implies #N = 4, #£C = 0 (there is just one
comporent), #F =4, #H = 0, which yields dim = 0, as observed ealier.
In the same way, we can ded with Ks. We drealy know that in general Ks canna
be ranked. This also foll ows from eq. (8). Because ' (Ks) = 1, we get:
dm=5+0-5-2=-2<0
Two isolated copies of K, yield dm =8 + 1 —(3+3+1) — 0= 2 > 0. These remaining

dimensions are predsely the shift and scding for the secondgroup d constraints, after
choasing them for the first K.
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K without self-

crossings on the torus T.
The number of faces,
edges and vertices equals
3, 10, and 3, respectively.

Figure 3. The complete graph Ks on the torus T without self-crosdngs. The dashed dlli pse
represents one of the axes of the torus.

K4 + K4 (the graph that consists of two copies of K4 conneded with ore single elge)
yieldsadimension o

dim=8+0—(3+3+1)-0=1>0

PRO-1. Let G dencte the graph correspondng to the N constraints and M equaliti es.
The genuine solution space withou any imposed equations of the form (2b) has
dimension N — 1. As observed ealier, ead equation d the form (2b) deaeases the
dimension by 1. Due to the linea dependencies in the left hand side of eq. (5), which
correspond to the faces of G, we discourt too much by doing so. Therefore dim is
increased by 1 for every face acept for the default ‘unbounad face when embedding
G in the plane. Therefore the resulting genuine dimension reads

dm=N-1+M+(F-1)

We can simplify this equation by using Euler’'s polyhedra equation (9), which leads
to

dm=F-M+N-2=-2I(G) +#EC

In words: components facilitate solutions; handles hamper solutions. If the number of
extra comporents #EC equals 0, then the solution, if it exists, is unique. For N
constraints without any restrictions on the probabiliti es, I'(G) = 0 and therefore dim =
#EC = N — 1. (Thisis also obvous withou referenceto graph theoretic nations.) If G
consists of T trees, then dm =#EC =T — 1.
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8 Sufficient conditionsfor the existence of solutions

We will ded with condtions for the existence of a solutionin the cae of PRO-2. It is
posshleto derive sufficient condtions for the existence of aranking solution for eat
cycle with Q constraints {‘a, ...’z’'} in the subgraph G in Ky. Starting paint is the
system of equations asin eg. (3):

(Ha - Hb) = Yar SAt(0a” + O°)
(Hb - He) = Yo SAt(O° + 0:c?)

(K2 - Ha) =Yz Sqrt(G‘Z’2 + 0"61’2)

(Q equations). In a g/cle, with the constraints in a arcular order, the sum of the left-
hand sides equals 0. That means that the inner product of the vedor I

F=(Ya, - Yza)
with
(sart(o-2* + ap?), ..., Srt(o% + 0:%))"
equals zero. Solutions for the variances predsely exist if the inner product (I", P)

attains different signs when P runs over the set of the Q column vedors of the
foll owing form:

11000...00
01100...00
00110...00
00011...00
00000...11
10000...01

The number of vedors in this st, as well as their dimension, equals the number of
constraints.

9 The approximate case

Until now, we have dedt with the model in an analytic way, withou paying attention
to cases in which an exad solution dces not exist, but in which an approximate
solution may exist. Thisis espedaly interesting when, ac@rding to the PRO model,
the dimension d the solutionis lessthan zero. In such a cae, ageneral exad solution
does not exist, urlessthe probabilities P('x’ < ‘y’) are chosen in a spedal way to
alow the existence of a solution d an ower-determined system. (This stuation is
comparable to the solution spaceof the linea equation Ax = b where rank(A) is not
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maximal.) If the probabilities deviate from this geda set, the exad solution
disappeas, bu it may still be possble to define the ‘ best possble’ solution. This ‘ best
possble’ solution minimizes the mismatch between the observed probabiliti es on the
one hand and the predicted probabiliti es on the other. One gpropriate gproad isto
define the *best possble’ model M to maximize the foll owing likelihood

P{P(X <'y <..)}X,V, ...|M)

For systems with N constraints, this likelihood can be evaluated in a numericd way
(theinvolved cdculationis graightforward bu tedious, it reduces an involved integral
to an integral of a gausgan owver a higher-dimensional octant (where dl coordinates
are nonnegative). Figure 4 shows the situation for dimension 3. The three lines
determine the boundxry between 6regionsin 3 dmensional space and the associated
probability P('xX’ <’y <'Z’) isthe integral of a cetain gausdan function owr the
correspondng V-shaped region. The very same principle hads in higher dimensions
(but is more difficult to show in afigure).

Theinvaved analysis shows that more compli cated ranking schemes can be treaed in
this manner. This more cmplex modelli ng goes beyondthe scope of this paper.

10 Implicationsfor rankingin OT

In this paper, the ranking of constraints on the basis of inpu data, as dedt with in
recent approadhesin OT, was taken as a starting point. We investigated aspeds of this
ranking from a mathematicd perspedive. The results that were thus obtained can be
trandated badk to OT in the following way.

Given a set of observed data of which the ordering of the nstraints is to be
modelled, it is possble to assrt beforehand which combinations of pair-wise
orderings can be modelled by a soft-ranking model and which combinations can nd.
The model that we investigated in this paper associates ead constraint with a
gaussan with two freemodel parameters (mean and variance). With eat combination
of impased pair-wise ranking probabiliti es, a unique graph G has been assciated.
Whether this combination d probabiliti es can be modelled ar not fully depends on the
graph structure of G. This graph structure is expressd in terms of number of vertices,
its number of componrents and faces, and the genus of G. The results, formulated as
the dimension d the solution space can eventuall y be summarized as: constraints and
components facilitate solutions; faces and the genus hamper solutions,

The higher the dimension d the solution space the more freedom exists to foll ow
the ‘recent statistics' in the input data. This means that the model is better cgpable to
follow (i.e. explain, reproduce) fluctuations in the statistics of the incoming data,
considered as a stream of inpu data.

For applicaions on the phondogicd domain, the results imply that the ranking of
four or fewer constraintsis in genera straightforward, while in the cae of more than
four constraints the existence of an exad solution is coincidental — as a mnsequence,
the solution is in general necessrily an approximation. The eistence of (exad)
solutions fully depends on the structure of the graph that is determined by the
linguistic constraints.
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‘b’ wins

T CaO{CCO{CbO

‘Cj{‘aj{‘bj

‘C,{‘b,{‘a,

Cb?{CCO{C

‘a’ wins -
¢’ wing

Figure 4. Evaluation of P{P('X’ <'y <‘Z')}y y, . | M). This figure depicts the situation for
three onstraints{‘a, ‘b’, ‘c’}. For example, the probability of observing the order ‘a-' b’-' ¢’ is
given by the integral of a gausdan distribution (which is related to the model M - here
represented by an elli pse) over the assciated V-shaped part at the right side of the figure. The
depicted model favours ‘c’ to be the winning constraint. Seen from this point of view,
congtraint ranking is a socca game playing with the location (and shape) of the green elli pse to
find an optimal location (and shape) that maximally matches all the probabilities P(‘'x'<’y’'<'Z’)
(spedfied beforehand). Observe that the threevedors (indicated by “ X’ wins') spana3 — 1= 2
dimensional subspace and that the ange between one aiother is exadly 120 degrees. In the
case of equal variances, the dlipse turns into a drcle, and evidently the room to model the
different probabiliti eswill deaease acordingly.
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