
IFA Proceedings 25, 2003 163 

Institute of Phonetic Sciences, 
University of Amsterdam, 
Proceedings 25 (2003), 163–170. 

THE INTERACTIVE DESIGN OF AN F0-
RELATED SPECTRAL ANALYSER* 

Ton Wempe and Paul Boersma 

Abstract 

We present a spectral analysis method that results in formant measurements that are more 
independent of the fundamental frequency of the signal than several other methods, such 
as fixed-window Fourier analysis, linear prediction, and interpolated pitch-related Fourier 
analysis. In order that the reader will be able to replicate our results, we give Praat scripts 
for generating the test signal, as well as for all the analyses. We show that the Praat 
program is the appropriate platform for developing, prototyping, testing, debugging, and 
optimizing speech analysis methods. 

 
 
 

1  Introduction 

For measuring dynamic formant contours, spectrograms ought to have both a good 
time resolution, but without visible individual periods, and a good frequency 
resolution, but without visible harmonics of the fundamental frequency (F0). These 
goals cannot be achieved by the usual technique of using a fixed time window and 
computing its Fourier transform to obtain the frequency spectrum. If we do not want 
to see the harmonics, the bandwidth of the window has to be more than F0. This 
broad-band spectrogram will require a time window much shorter than the period, so 
that we will see pitch-synchronous changes in the spectrogram. If we do not want to 
see those, our time window will have to be at least three periods, which will lead to a 
poor time resolution (e.g. in formant transitions) and to the visibility of the separate 
harmonics. This paper investigates several possible ways to overcome some of these 
problems: the LPC spectrogram, interpolated pitch-related DFT, and pitch-
synchronous truncated filtering. We use an artificial vowel-like test signal to compare 
the various methods. The truncated filtering method will turn out to be the least 
sensitive to F0. 

2  The test signal 

The test signal should be able to illustrate the dependence of measured formant values 
on F0: as a source signal, therefore, we take a 0.5 seconds long pulse train with an F0 

                                                 
* This paper is identical to the paper in the Proceedings of the 15th ICPhS, August 2003, Barcelona, 
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linearly falling from 350 to 150 Hz. To compute a vowel-like sound, we convolved 
this source with the sum of three damped sine waves, whose resonance frequencies 
were 820, 1300, and 2300 Hertz, respectively. Each of the resonances had a 
bandwidth equal to 1/12 of the resonance frequency. Script 1 generates this [a]-like 
vowel. We choose this parallel formant generation because LPC formant analysis 
methods tend to perform very poorly on such signals. Figure 1 shows a couple of 
periods of this signal. The vertical dotted lines show the times of the source pulses. 
The second visible period is slightly longer than the first, as can be seen at the source 
pulses. The shapes of the two visible periods are slightly different, because the 
formants of every period spill over into the next. 

1 ms
 

Figure 1: Part of the test signal (0.009 seconds). 
 

3  Three mediocre methods 

The most widely used method for frequency analysis is the broad-band Fourier 
spectrogram. We applied this to the test signal in 1-millisecond steps, using a 
Gaussian window with a half-duration of 5 milliseconds (giving a -3 dB bandwidth of 
260 Hz). The result is Figure 2. We see that there are very few times at which the 
maxima are positioned in the vicinity of the underlying formants. Instead, the maxima 
tend to ride on harmonics of the F0, and therefore tend to fall as a function of time. At 
many time points, moreover, we see three or four maxima in the 500–1500 Hz region, 
rather than two. 
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 Figure 2: Broad-band Fourier spectrogram.  Figure 3: Long window LPC spectrogram. 
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Another widely used method, especially for finding the positions of vowel 
formants, is LPC (linear predictive coding) analysis. We did this in Praat by first 
down-sampling the test signal to 12 kHz, then choosing “To LPC” with 10 poles and a 
Gaussian window with a half-duration of 25 ms, then choosing “To Spectrogram”. 
The result is shown in Figure 3, together with the formant contours that Praat derived 
from the LPC analysis. The formant curves in Figure 3 are seen almost to follow the 
maxima in the Fourier spectrogram of Figure 2. This effect is less severe for cascaded-
formant test signals, but even in that case the resulting formant measurements strongly 
depend on F0, on the number of poles, on the maximum frequency (6 kHz in this 
case), and on the degree of pre-emphasis (0 in this case) [1]. 
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 Figure 4:   Figure 5: 
 Interpolated pitch-related Fourier spectrogram.  Truncated-filter spectrogram. 
 
 
The third method we tried is based on extracting parts from the waveform with a 

duration of approximately one pitch period, cut at zero crossings. A discrete Fourier 
transform was computed (giving the energy in each harmonic), then interpolated with 
third-degree polynomials in the log-power domain. The result is shown in Figure 4. 
The maxima show almost as much F0-dependent variation as the methods of Figures 
2 and 3. 

4  The truncated-filter method 

After seeing the mediocre results of Figures 2, 3, and 4, we conclude that a reliable 
measurement of the resonance frequencies must be synchronized with the pitch 
period. Ideally, we would like to excise the periods precisely at the dotted lines in 
Figure 1. This is because if the signal is seen as composed of three sine waves, these 
sine waves are not smooth at the transitions between the periods (i.e. at the times of 
the pulses in the source signal). If we cut out the second visible period of Figure 1 in 
this way, we get the signal of Figure 6. 



 166 IFA Proceedings 25, 2003 

0 3000820 1300 2300

85

90

95

100

Frequency (Hz)

L
ev

el
 (

dB
)

 

 Figure 6:            Figure 7: 
 A single period (3.324 ms) of the test signal.  Truncated-filter spectrum. 
 
 

On this single period, we run a so-called truncated-filter spectrographic analysis. This 
method is originally based on a hardware implementation of a segment spectrograph 
that used a truncated filtering, with damped sine waves as impulse responses [2]. A 
later version was implemented as a Praat script that used a symmetric second-order 
filter in the frequency domain [3]. Iterative Praat sessions revealed that the ripple in 
the low part of the spectrum could be removed completely by using two filters in the 
frequency domain, one with a damped sine and one with a damped cosine impulse 
response. A different kind of improvement, namely one that speeded up the 
computation by a factor of 20, was a time-domain convolution with a damped sine, 
implemented as a two-sample recursive filter. The ripple that was re-introduced in this 
way was subsequently removed by including a recursive damped-cosine filter; such a 
filter can be implemented as the digital time derivative of the damped-sine filter. This 
final method is presented in script 2. Figure 7 shows the result for the period of Figure 
6. The damping was set to zero. 

In order to create a spectrogram, it is necessary to find a way to detect all the 
periods. For the spectrogram in Figure 5, we use a simple heuristic that can be 
automated in a Praat script: we first look for positive large peaks in the waveform that 
are approximately on one-period distances from each other, then guess that each 
underlying pulse lies 0.2 ms before such a peak. Script 3 implements the spectrogram 
of Figure 5 (in regions where no F0 can be determined, as in the very beginning of the 
test signal, a fixed window of 10 ms is used). When comparing Figure 5 with Figures 
2, 3 and 4, we see that the F0 dependence for the truncated-filter method is much less 
than for the other methods. 

5  Real speech 

Truncated-filter spectra work well for parallel as well as cascaded formants. LPC 
spectra work well for cascaded formants only. So how about real speech? Our testing 
shows that vowel formants are measured accurately if a pre-emphasis filter (a filter 
with a slope of 6 dB/octave above 50 Hz) is applied prior to the analysis. Such a pre-
emphasis filter has traditionally been used for broad-band spectrograms and LPC 
formant analysis of speech, and turns out to be useful for the truncated-filter analysis 
as well. Script 3 therefore contains a button for the application of pre-emphasis. 
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6  Interactive design with Praat 

The analysis method presented in this paper could not have been developed easily 
without the use of a dedicated script language. There exist several interpreted script 
languages that could be useful for developing speech analysis methods, including 
general mathematical script languages. The script language available in the Praat 
program [4] has the following advantages: 
 

1. There are handy built-in commands for phoneticians. Script 2 contains a single-
line Edit command for viewing intermediate results. Likewise, script 3 contains a 
Draw command for drawing each separate spectrum to the Picture window. 

2. Debugging commands (like Edit and Draw above, or the more general pause, 
exit, echo, and printline commands) can be easily commented out by using the 
semicolon (;) as a comment marker. In the style of scripts 2 and 3 this is distinguished 
from the number sign (#) that signals explanatory comments (other commenting-out 
tricks include the use of if 0 and boolean flags). 

3. In general-purpose mathematical script languages, spectra and sounds are seen as 
series of samples containing values in arbitrary units, whereas in Praat these objects 
are known by their physical quantities expressed in Hertz, seconds, or Pascal. This 
saves lots of conversion code and reduces programming errors. 

4. The inputs and outputs of the analysis are Praat’s Sound and Spectrogram 
objects. The script writer need not write any code for handling these data types. 
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Script 1:  GeneratePitchSweepVowel.praat 

form  Generate vowel with pitch sweep 
 choice  Method  2 
  button  Cascade 
  button  Parallel 
 positive  Duration_(sec)  0.5 
 positive  Initial_F0_(Hz)  250 
 positive  Final_F0_(Hz)  150 
 positive  F1_(Hz)  820 
 real  Amplitude_F1  1.0 
 positive  F2_(Hz)  1300 
 real  Amplitude_F2  1.0 
 positive  F3_(Hz)  2300 
 real  Amplitude_F3  1.0 
 real  Formant/Bandwidth  12 
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endform 
 
quality = 'Formant/Bandwidth' 
 
# Create voice source signal. 
Create PitchTier...  sweep  0.0  duration 
Add point...  0  initial_F0 
Add point...  duration  final_F0 
To PointProcess 
To Sound (pulse train)...  44100  1.0  0.05  2000 
 
if  method$ = "Cascade" 
 # Filter the sound with the first three formants. 
 for  i  to  3 
  Filter with one formant (in-line)...  f'i'  f'i'/quality 
 endfor 
 # Add some extra formants to get a flatter spectrum. 
 for  i  from  4  to  9 
  Filter with one formant (in-line)...  i*1200-600  200 
 endfor 
else 
 # Construct the impulse response of the filter. 
 Create Sound...  filter  0  duration  44100  0 
 for  i  to  3 
  Formula...  self + amplitude_F'i' * sin (2 * pi * f'i' * x) * exp (- pi * f'i' / quality * x) 
 endfor 
 # Convolve the sound with the impulse response. 
 plus Sound sweep 
 Convolve 
endif 
 
# Make it pleasant for our ears. 
Scale...  0.99 
 

Script 2:  truncatedFilterSpectrum.praat 

form  Truncated-filter spectrum 
 real  Filter_width_/_F0  0 
 positive  Maximum_frequency_(Hz)  5000 
 positive  Frequency_step_(Hz)  10 
endform 
Copy...  sound 
tmin = Get starting time 
tmax = Get finishing time 
bandwidth = 'Filter_width_/_F0' / (tmax - tmin) 
fsamp = Get sample rate 
Copy...  filtered 
nfreq = maximum_frequency  div  frequency_step + 1 
Create Matrix...  spectrum  0  maximum_frequency nfreq  frequency_step  0  1  2  2  1  1  0 
for  ifreq  to  nfreq 
 frequency = (ifreq - 1) * frequency_step 
 p = -2 * exp (- pi * bandwidth / fsamp) * cos (2 * pi * frequency / fsamp) 
 q = exp (- 2 * pi * bandwidth / fsamp) 
 select  Sound  filtered 
 
 # Filter with a damped sine. 
 Formula...  Sound_sound [col] - p * self [col - 1] - q * self [col - 2] 
 Multiply...  2 * pi * frequency / fsamp 
 energy_sin = Get energy...  tmin  tmax 
 
 # Debugging trick for seeing the sine-filtered sound. 
 ;Edit 
 ;pause Frequency 'frequency' Hertz 
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 # Filter with a damped cosine. 
 Formula...  Sound_sound [col] - Sound_sound [col - 1] - p * self [col - 1] - q * self [col - 2] 
 energy_cos = Get energy...  tmin  tmax 
 
 # Store the result. 
 select  Matrix  spectrum 
 Set value...  1  ifreq  sqrt (energy_sin + energy_cos) 
endfor 
To Spectrum 
 
# The simplest debugging trick: 
# exit before the intermediate objects are thrown away 
;exit 
 
# Clean up. 
select  Sound  sound 
plus  Sound  filtered 
plus  Matrix  spectrum 
Remove 
select  Spectrum  spectrum 
 

Script 3:  truncatedFilterSpectrogram.praat 

form  Truncated-filter spectrogram 
 positive  Time_step_(s)  0.005 
 positive  Minimum_pitch_(Hz)  75 
 positive  Maximum_pitch_(Hz)  600 
 positive  Maximum_frequency_(Hz)  5000 
 positive  Frequency_step_(Hz)  10 
 boolean  Pre-emphasize  0 
endform 
 
Copy...  sound 
if  'Pre-emphasize' 
 Pre-emphasize (in-line)...  50 
endif 
tmin = Get starting time 
tmax = Get finishing time 
fsamp = Get sample rate 
To PointProcess (periodic, peaks)... minimum_pitch  maximum_pitch  yes  no 
Rename...  pulses 
numberOfPulses = Get number of points 
numberOfFrames = (tmax - tmin) / time_step - 1 
nfreq = maximum_frequency  div  frequency_step + 1 
Create Matrix...  result  tmin  tmax numberOfFrames  time_step  tmin+time_step 
...  0  maximum_frequency  nfreq  frequency_step  0  0 
 
for  iframe  to  numberOfFrames 
 # Select one period. 
 tmid = tmin + iframe * time_step 
 select  PointProcess  pulses 
 highIndex = Get high index...  tmid 
 if  highIndex = 1  or  highIndex > numberOfPulses 
  pitch = undefined 
 else 
  begin = Get time from index...  highIndex-1 
  end = Get time from index...  highIndex 
  pitch = 1 / (end - begin) 
  if  pitch < minimum_pitch or  pitch > maximum_pitch 
   pitch = undefined 
  else 
   begin -= 0.0002 
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   end -= 0.0002 
  endif 
 endif 
 if  pitch = undefined 
  begin = tmid - 0.005 
  end = tmid + 0.005 
 endif 
 select  Sound  sound 
 Extract part...  begin  end  Rectangular  1  yes 
 Rename...  period 
 
 # Compute spectrum. 
 execute  truncatedFilterSpectrum.praat 0  'maximum_frequency'  10 
 
 # Show progress. 
 ;Erase all 
 ;Draw...  0  0  0  0  yes 
 ;Text top...  yes  Frame 'iframe', pitch 'pitch' Hz 
 
 # Store results. 
 select  Matrix  result 
 for  ifreq  to  nfreq 
  Set value...  ifreq  iframe Spectrum_spectrum [1, ifreq] ^ 2 
 endfor 
 
 # Clean up. 
 select  Sound  period 
 plus  Spectrum  spectrum 
 Remove 
 
endfor 
select  Matrix  result 
To Spectrogram 

Postscript 

The formula for the in-line filter with the cosine impulse response:  
 
 Formula... Sound_sound [col] - Sound_sound [col - 1] - p * self [col - 1] - q * self [col - 2]  
 
(script 2, under “# Filter with a damped cosine”) is, strictly speaking, not correct. Our 
Institute's mathematician, Jan van Dijk, provided us with the mathematically correct 
formula which results into the following code as a replacement:  
 
if frequency = 0 
  b = 0 
  c = 0 
  bb = 0 
else 
  epsilon = 0.5 * bandwidth / frequency 
  b = 2 * exp (- epsilon * omega * tsamp) * cos (omega * tsamp) 
  c = exp (- 2 * epsilon * omega * tsamp) 
  bb = exp (- epsilon * omega * tsamp) * (cos (omega * tsamp) + epsilon * sin (omega * tsamp)) 
endif 
Formula... 0.5 * Sound_sound [col] - Sound_sound [col-1] * (bb - 0.5 * b) - Sound_sound [col-2] * 0.5 *  
... c + (b * self [col-1] - c * self [col-2]) 
 
In practice, however, the difference is negligible. 


