
IFA Proceedings 25, 2003 163

Institute of Phonetic Sciences,
University of Amsterdam,
Proceedings 25 (2003), 163–170.

THE INTERACTIVE DESIGN OF AN F0-
RELATED SPECTRAL ANALYSER*

Ton Wempe and Paul Boersma

Abstract

We present a spectral analysis method that results in formant measurements that are more
independent of the fundamental frequency of the signal than several other methods, such
as fixed-window Fourier analysis, linear prediction, and interpolated pitch-related Fourier
analysis. In order that the reader will be able to replicate our results, we give Praat scripts
for generating the test signal, as well as for all the analyses. We show that the Praat
program is the appropriate platform for developing, prototyping, testing, debugging, and
optimizing speech analysis methods.

1 Introduction

For measuring dynamic formant contours, spectrograms ought to have both a good
time resolution, but without visible individual periods, and a good frequency
resolution, but without visible harmonics of the fundamental frequency (F0). These
goals cannot be achieved by the usual technique of using a fixed time window and
computing its Fourier transform to obtain the frequency spectrum. If we do not want
to see the harmonics, the bandwidth of the window has to be more than F0. This
broad-band spectrogram will require a time window much shorter than the period, so
that we will see pitch-synchronous changes in the spectrogram. If we do not want to
see those, our time window will have to be at least three periods, which will lead to a
poor time resolution (e.g. in formant transitions) and to the visibility of the separate
harmonics. This paper investigates several possible ways to overcome some of these
problems: the LPC spectrogram, interpolated pitch-related DFT, and pitch-
synchronous truncated filtering. We use an artificial vowel-like test signal to compare
the various methods. The truncated filtering method will turn out to be the least
sensitive to F0.

2 The test signal

The test signal should be able to illustrate the dependence of measured formant values
on F0: as a source signal, therefore, we take a 0.5 seconds long pulse train with an F0

* This paper is identical to the paper in the Proceedings of the 15th ICPhS, August 2003, Barcelona,
except for the postscript.

 164 IFA Proceedings 25, 2003

linearly falling from 350 to 150 Hz. To compute a vowel-like sound, we convolved
this source with the sum of three damped sine waves, whose resonance frequencies
were 820, 1300, and 2300 Hertz, respectively. Each of the resonances had a
bandwidth equal to 1/12 of the resonance frequency. Script 1 generates this [a]-like
vowel. We choose this parallel formant generation because LPC formant analysis
methods tend to perform very poorly on such signals. Figure 1 shows a couple of
periods of this signal. The vertical dotted lines show the times of the source pulses.
The second visible period is slightly longer than the first, as can be seen at the source
pulses. The shapes of the two visible periods are slightly different, because the
formants of every period spill over into the next.

1 ms

Figure 1: Part of the test signal (0.009 seconds).

3 Three mediocre methods

The most widely used method for frequency analysis is the broad-band Fourier
spectrogram. We applied this to the test signal in 1-millisecond steps, using a
Gaussian window with a half-duration of 5 milliseconds (giving a -3 dB bandwidth of
260 Hz). The result is Figure 2. We see that there are very few times at which the
maxima are positioned in the vicinity of the underlying formants. Instead, the maxima
tend to ride on harmonics of the F0, and therefore tend to fall as a function of time. At
many time points, moreover, we see three or four maxima in the 500–1500 Hz region,
rather than two.

0

820

1300

2300

3000

0 0.5Time (s)

Fr
eq

ue
nc

y
(H

z)

0

820

1300

2300

3000

0 0.5Time (s)

Fr
eq

ue
nc

y
(H

z)

 Figure 2: Broad-band Fourier spectrogram. Figure 3: Long window LPC spectrogram.

IFA Proceedings 25, 2003 165

Another widely used method, especially for finding the positions of vowel
formants, is LPC (linear predictive coding) analysis. We did this in Praat by first
down-sampling the test signal to 12 kHz, then choosing “To LPC” with 10 poles and a
Gaussian window with a half-duration of 25 ms, then choosing “To Spectrogram”.
The result is shown in Figure 3, together with the formant contours that Praat derived
from the LPC analysis. The formant curves in Figure 3 are seen almost to follow the
maxima in the Fourier spectrogram of Figure 2. This effect is less severe for cascaded-
formant test signals, but even in that case the resulting formant measurements strongly
depend on F0, on the number of poles, on the maximum frequency (6 kHz in this
case), and on the degree of pre-emphasis (0 in this case) [1].

0

820

1300

2300

3000

0 0.5Time (s)

Fr
eq

ue
nc

y
(H

z)

0

820

1300

2300

3000

0 0.5Time (s)

Fr
eq

ue
nc

y
(H

z)

 Figure 4: Figure 5:
 Interpolated pitch-related Fourier spectrogram. Truncated-filter spectrogram.

The third method we tried is based on extracting parts from the waveform with a

duration of approximately one pitch period, cut at zero crossings. A discrete Fourier
transform was computed (giving the energy in each harmonic), then interpolated with
third-degree polynomials in the log-power domain. The result is shown in Figure 4.
The maxima show almost as much F0-dependent variation as the methods of Figures
2 and 3.

4 The truncated-filter method

After seeing the mediocre results of Figures 2, 3, and 4, we conclude that a reliable
measurement of the resonance frequencies must be synchronized with the pitch
period. Ideally, we would like to excise the periods precisely at the dotted lines in
Figure 1. This is because if the signal is seen as composed of three sine waves, these
sine waves are not smooth at the transitions between the periods (i.e. at the times of
the pulses in the source signal). If we cut out the second visible period of Figure 1 in
this way, we get the signal of Figure 6.

 166 IFA Proceedings 25, 2003

0 3000820 1300 2300

85

90

95

100

Frequency (Hz)

L
ev

el
 (

dB
)

 Figure 6: Figure 7:
 A single period (3.324 ms) of the test signal. Truncated-filter spectrum.

On this single period, we run a so-called truncated-filter spectrographic analysis. This
method is originally based on a hardware implementation of a segment spectrograph
that used a truncated filtering, with damped sine waves as impulse responses [2]. A
later version was implemented as a Praat script that used a symmetric second-order
filter in the frequency domain [3]. Iterative Praat sessions revealed that the ripple in
the low part of the spectrum could be removed completely by using two filters in the
frequency domain, one with a damped sine and one with a damped cosine impulse
response. A different kind of improvement, namely one that speeded up the
computation by a factor of 20, was a time-domain convolution with a damped sine,
implemented as a two-sample recursive filter. The ripple that was re-introduced in this
way was subsequently removed by including a recursive damped-cosine filter; such a
filter can be implemented as the digital time derivative of the damped-sine filter. This
final method is presented in script 2. Figure 7 shows the result for the period of Figure
6. The damping was set to zero.

In order to create a spectrogram, it is necessary to find a way to detect all the
periods. For the spectrogram in Figure 5, we use a simple heuristic that can be
automated in a Praat script: we first look for positive large peaks in the waveform that
are approximately on one-period distances from each other, then guess that each
underlying pulse lies 0.2 ms before such a peak. Script 3 implements the spectrogram
of Figure 5 (in regions where no F0 can be determined, as in the very beginning of the
test signal, a fixed window of 10 ms is used). When comparing Figure 5 with Figures
2, 3 and 4, we see that the F0 dependence for the truncated-filter method is much less
than for the other methods.

5 Real speech

Truncated-filter spectra work well for parallel as well as cascaded formants. LPC
spectra work well for cascaded formants only. So how about real speech? Our testing
shows that vowel formants are measured accurately if a pre-emphasis filter (a filter
with a slope of 6 dB/octave above 50 Hz) is applied prior to the analysis. Such a pre-
emphasis filter has traditionally been used for broad-band spectrograms and LPC
formant analysis of speech, and turns out to be useful for the truncated-filter analysis
as well. Script 3 therefore contains a button for the application of pre-emphasis.

IFA Proceedings 25, 2003 167

6 Interactive design with Praat

The analysis method presented in this paper could not have been developed easily
without the use of a dedicated script language. There exist several interpreted script
languages that could be useful for developing speech analysis methods, including
general mathematical script languages. The script language available in the Praat
program [4] has the following advantages:

1. There are handy built-in commands for phoneticians. Script 2 contains a single-
line Edit command for viewing intermediate results. Likewise, script 3 contains a
Draw command for drawing each separate spectrum to the Picture window.

2. Debugging commands (like Edit and Draw above, or the more general pause,
exit, echo, and printline commands) can be easily commented out by using the
semicolon (;) as a comment marker. In the style of scripts 2 and 3 this is distinguished
from the number sign (#) that signals explanatory comments (other commenting-out
tricks include the use of if 0 and boolean flags).

3. In general-purpose mathematical script languages, spectra and sounds are seen as
series of samples containing values in arbitrary units, whereas in Praat these objects
are known by their physical quantities expressed in Hertz, seconds, or Pascal. This
saves lots of conversion code and reduces programming errors.

4. The inputs and outputs of the analysis are Praat’s Sound and Spectrogram
objects. The script writer need not write any code for handling these data types.

References

[1] Gautam K. Vallabha & Betty Tuller, (2002): “Systematic errors in the formant analysis of steady-

state vowels.” Speech Communication 38, 141–160.
[2] Ton Wempe, (1979): “An experimental segment spectrograph based on some notes on frequency

analysis of speech segments.” Proceedings of the Institute of Phonetic Sciences of the University
of Amsterdam 5, 44–102.

[3] Ton Wempe, (2001): “F0-related formant measurements.” Proceedings of the Institute of Phonetic
Sciences of the University of Amsterdam 24, 167–187.

[4] Paul Boersma & David Weenink, (1992–2003): Praat, a system for doing phonetics by computer.
http://www.praat.org.

Script 1: GeneratePitchSweepVowel.praat

form Generate vowel with pitch sweep
 choice Method 2
 button Cascade
 button Parallel
 positive Duration_(sec) 0.5
 positive Initial_F0_(Hz) 250
 positive Final_F0_(Hz) 150
 positive F1_(Hz) 820
 real Amplitude_F1 1.0
 positive F2_(Hz) 1300
 real Amplitude_F2 1.0
 positive F3_(Hz) 2300
 real Amplitude_F3 1.0
 real Formant/Bandwidth 12

 168 IFA Proceedings 25, 2003

endform

quality = 'Formant/Bandwidth'

Create voice source signal.
Create PitchTier... sweep 0.0 duration
Add point... 0 initial_F0
Add point... duration final_F0
To PointProcess
To Sound (pulse train)... 44100 1.0 0.05 2000

if method$ = "Cascade"
 # Filter the sound with the first three formants.
 for i to 3
 Filter with one formant (in-line)... f'i' f'i'/quality
 endfor
 # Add some extra formants to get a flatter spectrum.
 for i from 4 to 9
 Filter with one formant (in-line)... i*1200-600 200
 endfor
else
 # Construct the impulse response of the filter.
 Create Sound... filter 0 duration 44100 0
 for i to 3
 Formula... self + amplitude_F'i' * sin (2 * pi * f'i' * x) * exp (- pi * f'i' / quality * x)
 endfor
 # Convolve the sound with the impulse response.
 plus Sound sweep
 Convolve
endif

Make it pleasant for our ears.
Scale... 0.99

Script 2: truncatedFilterSpectrum.praat

form Truncated-filter spectrum
 real Filter_width_/_F0 0
 positive Maximum_frequency_(Hz) 5000
 positive Frequency_step_(Hz) 10
endform
Copy... sound
tmin = Get starting time
tmax = Get finishing time
bandwidth = 'Filter_width_/_F0' / (tmax - tmin)
fsamp = Get sample rate
Copy... filtered
nfreq = maximum_frequency div frequency_step + 1
Create Matrix... spectrum 0 maximum_frequency nfreq frequency_step 0 1 2 2 1 1 0
for ifreq to nfreq
 frequency = (ifreq - 1) * frequency_step
 p = -2 * exp (- pi * bandwidth / fsamp) * cos (2 * pi * frequency / fsamp)
 q = exp (- 2 * pi * bandwidth / fsamp)
 select Sound filtered

 # Filter with a damped sine.
 Formula... Sound_sound [col] - p * self [col - 1] - q * self [col - 2]
 Multiply... 2 * pi * frequency / fsamp
 energy_sin = Get energy... tmin tmax

 # Debugging trick for seeing the sine-filtered sound.
 ;Edit
 ;pause Frequency 'frequency' Hertz

IFA Proceedings 25, 2003 169

 # Filter with a damped cosine.
 Formula... Sound_sound [col] - Sound_sound [col - 1] - p * self [col - 1] - q * self [col - 2]
 energy_cos = Get energy... tmin tmax

 # Store the result.
 select Matrix spectrum
 Set value... 1 ifreq sqrt (energy_sin + energy_cos)
endfor
To Spectrum

The simplest debugging trick:
exit before the intermediate objects are thrown away
;exit

Clean up.
select Sound sound
plus Sound filtered
plus Matrix spectrum
Remove
select Spectrum spectrum

Script 3: truncatedFilterSpectrogram.praat

form Truncated-filter spectrogram
 positive Time_step_(s) 0.005
 positive Minimum_pitch_(Hz) 75
 positive Maximum_pitch_(Hz) 600
 positive Maximum_frequency_(Hz) 5000
 positive Frequency_step_(Hz) 10
 boolean Pre-emphasize 0
endform

Copy... sound
if 'Pre-emphasize'
 Pre-emphasize (in-line)... 50
endif
tmin = Get starting time
tmax = Get finishing time
fsamp = Get sample rate
To PointProcess (periodic, peaks)... minimum_pitch maximum_pitch yes no
Rename... pulses
numberOfPulses = Get number of points
numberOfFrames = (tmax - tmin) / time_step - 1
nfreq = maximum_frequency div frequency_step + 1
Create Matrix... result tmin tmax numberOfFrames time_step tmin+time_step
... 0 maximum_frequency nfreq frequency_step 0 0

for iframe to numberOfFrames
 # Select one period.
 tmid = tmin + iframe * time_step
 select PointProcess pulses
 highIndex = Get high index... tmid
 if highIndex = 1 or highIndex > numberOfPulses
 pitch = undefined
 else
 begin = Get time from index... highIndex-1
 end = Get time from index... highIndex
 pitch = 1 / (end - begin)
 if pitch < minimum_pitch or pitch > maximum_pitch
 pitch = undefined
 else
 begin -= 0.0002

 170 IFA Proceedings 25, 2003

 end -= 0.0002
 endif
 endif
 if pitch = undefined
 begin = tmid - 0.005
 end = tmid + 0.005
 endif
 select Sound sound
 Extract part... begin end Rectangular 1 yes
 Rename... period

 # Compute spectrum.
 execute truncatedFilterSpectrum.praat 0 'maximum_frequency' 10

 # Show progress.
 ;Erase all
 ;Draw... 0 0 0 0 yes
 ;Text top... yes Frame 'iframe', pitch 'pitch' Hz

 # Store results.
 select Matrix result
 for ifreq to nfreq
 Set value... ifreq iframe Spectrum_spectrum [1, ifreq] ^ 2
 endfor

 # Clean up.
 select Sound period
 plus Spectrum spectrum
 Remove

endfor
select Matrix result
To Spectrogram

Postscript

The formula for the in-line filter with the cosine impulse response:

 Formula... Sound_sound [col] - Sound_sound [col - 1] - p * self [col - 1] - q * self [col - 2]

(script 2, under “# Filter with a damped cosine”) is, strictly speaking, not correct. Our
Institute's mathematician, Jan van Dijk, provided us with the mathematically correct
formula which results into the following code as a replacement:

if frequency = 0
 b = 0
 c = 0
 bb = 0
else
 epsilon = 0.5 * bandwidth / frequency
 b = 2 * exp (- epsilon * omega * tsamp) * cos (omega * tsamp)
 c = exp (- 2 * epsilon * omega * tsamp)
 bb = exp (- epsilon * omega * tsamp) * (cos (omega * tsamp) + epsilon * sin (omega * tsamp))
endif
Formula... 0.5 * Sound_sound [col] - Sound_sound [col-1] * (bb - 0.5 * b) - Sound_sound [col-2] * 0.5 *
... c + (b * self [col-1] - c * self [col-2])

In practice, however, the difference is negligible.

