
1

The phonological component of the Dutch mental

lexicon is small-world
Casper van Velzen

BA Taalwetenschap

Universiteit van Amsterdam

26-07-2018

Abstract
Phonological forms of words are stored in the mental lexicon. Previous studies have found that these

entries in the lexicon are somehow connected. Using a branch of mathematics called Graph Theory,

this study analyses this network of phonological forms stored in the brain. The network turns out to

be small-world, meaning there is a high degree of clustering.

2

The phonological component of the Dutch mental lexicon is small-

world
Casper van Velzen

Intdroduction

It is not controversial to claim that linguistic elements like phonology and semantics are stored

somewhere in the brain. In lingustics, the network of linguistic elements that are stored in the brain

is called the mental lexicon. Evidence for connections between individual elements has been found in

lexical-decision tasks. In these experiments, certain prime words can increase reaction time on a

target word if they are phonologically related (Lukatela & Turvey, 1990) This inhibition is proof that

the mental lexicon is indeed a network.

Little is known about the shape of individual entries in the mental lexicon, let alone the entire

network. Luckily, there is a branch of mathematics called Graph theory that concerns networks and

network analysis. Using graph theory, the present study will test a model of the Dutch mental lexicon

for a property called small-worldness.

Jeronimus et al. (2017) define small-world networks as being sparse graphs with a high Clustering

Coefficient (CC) and a low Average Minimum Path Length (APL).

A graph is essentially what mathematicians call a network, where points (also called nodes or

vertices) are connected by edges.

Edges can be directed or undirected. In undirected networks, an edge going from node A to node B is

per definition also an edge going from node B to node A. If the graph is directed, a connection from A

to B does not always mean a connection from B to A. An example of an undirected graph would be a

social network, where every person is represented by a vertex and their connection is represented

with an edge. If person A is acquainted with person B, person B is also necessarily acquainted with

person A. A directed graph can be found in the simulation of an ecosystem. If a certain species of bird

likes to eat worms, the worms do not necessarily eat those birds, so an edge would only go from the

bird to the worm, and not the other way around.

Edges can also have a weight. The weight is a number representing the distance between two

vertices. For example, in a network representing the European railway system, the three hour ride

from Amsterdam to Paris will have a higher weight than the one hour ride from Paris to the French

city of Amiens. In an unweighted graph, all edges have a weight of 1.

One of the conditions for small-world networks is that the network must be sparse. Sparse graphs

are graphs that have fewer than the maximum number of connections (Barabási, 2015). If the graph

is not sparse, it is dense. Figure 1 shows a network where every node is connected to every other

node. In other words, the graph has the maximum number of connections and is therefore dense.

The number of edges in an undirected dense graph can be found using the formula 𝑒𝑑𝑔𝑒𝑠 =
𝑛(𝑛−1)

2

where n is the number of vertices in the network. Figure 2 displays a sparse network.

The density of a graph can be calculated by dividing the number of edges by the maximum possible

number of edges. For example, the density d of the network in figure 1 is 𝑑 =
10

10
= 1 while the

density of the network in figure 2 is 𝑑 =
7

10
= 0,7.

3

Fig 1: A dense graph Fig 2: A sparse graph with a CC of approximately 0,767

Another condition for small-worldness is that the graph must have a high Clustering Coefficient (CC).

The Clustering Coefficient is a number representing the degree of clustering within a network. The CC

of an entire graph is defined as being the average CC of all vertices within the graph.

The CC of a vertex can be calculated as follows: 𝐶𝐶𝑣𝑒𝑟𝑡𝑒𝑥 =
𝑛𝑟 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

𝑚𝑎𝑥 𝑛𝑟 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

where the neighbours of a vertex are all nodes that are connected with an edge. In figure 2, the

neighbours of node A are the nodes B, C, D and E. The maximum number of edges between these

four nodes is 6. Therefore, 𝐶𝐶𝐴 =
3

6
= 0,5. Similarly, the neighbours of B are A, C and D. Applying the

same formula yields 𝐶𝐶𝐵 =
2

3
≈ 0,667. Taking the average CC of every node in this network yields a

result of approximately 0,767.

The final condition for small-worldness is a low Average Minimum Path Length (APL). The minimum

path length from one node to another is the shortest route between the two points. Take figure 3. To

get from A to B, one could first visit C. In that case, the path length will be 2, because two edges have

been traveled. The shortest path however, is the direct connection between A and B, so the

minimum path length is 1. Similarly, to get from C to E, one could visit every other node by taking the

path C -> A -> B -> D -> E. One could even infinitely loop around. The shortest path, however is C -> A

-> D -> E1 with a path length of 3.

The APL of an entire graph is the average minimum path length from every node to every other

node. The minimum path lengths between every vertex in figure 3 can be found in the table of figure

4.

In network research, it is possible to find a network like in figure 5, where there is no way to get from

one point to the other, because there is no connection. In case of figure 5, there is no route that

leads to or from node E. If this is the case, the graph is called disconnected. In a disconnected graph,

it is impossible to calculate the APL. What’s more, if there is a node without any connections, like E in

figure 5, the calculation for its CC would require a division by 0, which is mathematically impossible.

For research’ sake, the most common way to deal with this problem is to only analyse the biggest

component of the graph. That is, the part that is connected with the highest number of nodes.

1 C -> B -> D -> E is an equally short route, but the minimum path length stays at 3.

4

Fig 3: A network with an APL of 1.5 Fig 4: The minumum path legths and APL of the network in figure 4

Fig 5: A disconnected graph. The biggest component contains nodes A, B, C and D.

Humphries & Gurney (2008) propose the following formula to quantify small-worldness: 𝜎 =

𝐶𝐶

𝐶𝐶𝑟
𝐴𝑃𝐿

𝐴𝑃𝐿𝑟

where the network is small-world if 𝜎 > 1, 𝐶𝐶 ≫ 𝐶𝐶𝑟 and 𝐴𝑃𝐿 ≈ 𝐴𝑃𝐿𝑟. The subscript r stands for

randomised. Determining small-worldness within a network is done by comparing the graph to Erdos-

Rényi (ER) randomised graphs.

An ER-randomised graph starts with a network of a given size and 0 connections. Then, an algorithm

goes over every possible combination of nodes within the network and decides wheter or not to lay a

connection, with a given probability. In order to make the randomised graphs and the empirical

network comparable, the size and chance of laying a connection should be such that the number of

nodes and connections are similar those of to the biggest component of the empirical network. As it

happens, all networks I generated were fully connected, so they were very much comparable to the

biggest component of the real-world network.

Small-world networks have been found in a number of different fields, ranging from social relations

(Wasserman & Faust, 1994) to power grids (Watts & Strogatz, 1998). In linguistics, small-worldness

has been found in networks concerning East-Asian orthography (Jeronimus et al., 2017), lexical co-

occurrence (Ferrer & Solé, 2001), semantic relations of words (Motter et al., 2002) and the

phonology of English lexemes (Vitevitch, 2008).

PATH MIN PATH LENGHT
A -> B 1
A -> C 1
A -> D 1
A -> E 2
B -> C 1
B -> D 1
B -> E 2
C -> D 2
C -> E 3
D -> E 1
AVERAGE 1.5

5

This study focuses on the phonological component of the mental lexicon. Specifically, how the

individual entries are connected on a phonological level. While network analysis cannot give us a

clear answer about the exact properties of the mental lexicon, it can give us a clearer view on the

way it is structured. It is a puzzle piece that will ultimately help us understand how words are stored

in the brain.

The network was created and analysed with a Python script written by me using the Networkx

module (Hagberg et al., 2008). The ER-randomised networks were generated using a different self-

written script, which relies on the same module. Networkx is useful, as it allows for easy graph

creation, and it has readily available functions to calculate Clustering and APL as well as a function to

generate ER-randomised graphs. Both scripts are freely available at http://fon.hum.uva.nl/archive/.

Data

All entries in the network were taken from the WebCelex database (http://celex.mpi.nl/, accessed

April 2018). The following options were chosen to create the database:

Dutch Lemmas. Lemmas are the conventionalised forms of lexemes that are found in the dictionary.

A lexeme is a unit of meaning, without its inflectional variants. Although it can be argued that

lexemes are not the only elements explicitly stored in the mental lexicon (Pinker, 1998), it is the bare

minimum that has to be stored in the brain.

INL frequency. The Dutch Lemma database has about 125.000 entries, while the average well-

educated adult mental lexicon has been estimated to contain about 17.000 entries (Goulden et al.,

1990). Therefore, only the 20.000 most frequent entries were chosen. Unfortunately, only about half

of the entries actually had a phonological transcription, so the actual number of analysed entries is

10.969.

PhonolCLX. There is a difference between what phonological representation is stored in the brain and

the sound that a speaker produces. Since I am only interested in the underlying representation that is

stored in the brain, the underlying representation was chosen.

After retrieving the database and filtering out the 20.000 entries with the highest frequency, all

morpheme borders (#, + and -) were removed from the transcriptions. Then, all instances of

diphthongs were replaced with a number (EI became 1, UI became 2 and AU became 3). For example,

the word hij (‘he’) was transcribed as hEI. After replacing the diphthong, it is transcribed as h1. This

way, all diphthongs are counted as a single phoneme. All long vowels were also recognised as a single

phoneme within the script. As for why I did not opt for a special character for long vowels, that was

the result of the order in which I wrote the code. I had already written the code which combines the

two characters representing long vowels into a single element, when I decided to replace all

instances of diphthongs with single characters. Since it didn’t take a lot of computing power, I

decided to let the code stay as is.

Within the network, each lemma is represented by a node, and connections were made if two

lemmas are phonological neighbours. Phonological neighbourhood is defined as follows:

 If lemma A results in lemma B when adding, subtracting or substituting a single phoneme,

 lemmas A and B are phonological neighbours.

http://fon.hum.uva.nl/archive/
http://celex.mpi.nl/

6

A phonological neighbour is not the same as a minimal pair, although all minimal pairs are

phonological neighbours. Minimal pairs are useful for determining wheter a sound is a phoneme in a

language, but they are not useful for determining wheter or not words are phonologically related.

Some words that seem phonologically related, like vuur (‘fire’) and vuurzee (‘conflagration’) are

omitted from this definition, because it is difficult to computationally express these connections.2

The creation of the network, including the decision as to whether or not to make a connection

between nodes, was made in a Python script written by me.

The Clustering Coefficient and Average Path Length were calculated using NetworkX’

average_clustering and average_shortest_path_length functions respectively.

In the set of 10.969 analysed lemmas, 17.066 minimal pairs were found. However, because the

network is disconnected, the biggest component of 652 lemmas was analysed instead. Of course, the

biggest component is quite small compared to the entire graph, and it might not be representative of

the entire network.

 NR OF NODES NR OF EDGES APL CC
ENTIRE GRAPH 10.969 17.066 - -
BIGGEST
COMPONENT

652 5841 3,2033775314994393 0,4139803689756391

Fig 6: Results of the analysis of the empirical network

Randomised networks

1000 ER-randomised graphs were created with NetworkX’ fast_gnp_random_graph function.

The parameters given to the function were n = 652 and 𝑝 =
5841

(
(𝑛∗ (𝑛−1))

2
)
 where n is the number nodes

and p is the probability of creating a connection. The size is equal to the biggest component found in

the empirical network. p is calculated by deviding the number of connections found in the biggest

component of the empirical network by the maximum number of connections in a graph of size n.

Once again, the CC and APL were analysed using the average_clustering and

average_shortest_path_length functions respectively. The data was analysed with R (R Core Team,

2017). As expected, while the number of nodes and edges are similar to those of the empirical

network, the CC is a lot lower.

N = 1000 NR OF NODES NR OF EDGES APL CC
AVERAGE 652 5843,28 2,568159 0,02752255
SD 0 72,98 0,008171774 0,001036508

Fig 7: Results of the analysis of the ER-randomised networks

2 Experienced programmers might argue that an expression along the lines of ‘string1 contains string2’ will do
the trick, but that expression will also connect words like ze (‘she’) and bewezen (‘proven’) which are not
related.

7

Small-worldness

In the introduction, two definitions of small-worldness were mentioned. Firstly, Jeronimus et al. state

that small-world networks have a high CC and a low APL.

A z-test shows the number of standard deviations an observation is away from the average of a

population. It is calculated with 𝑧 =
𝑥− 𝜇

𝜎
 where x is the observation, μ is the average of the

population and σ is the standard deviation of the population. The z-score for the CC found in the

empiric network is 𝑧 =
0,4139803689756391− 0,02752255

0,001036508
≈ 372,846

Thus, the empirical network does have a relatively high CC.

While the APL of the empricical network is high compared to the ER-randomised networks, it is still

close to the absolute minimum, and far from the absolute maximum APL. The minimum possible APL

of a graph can be calculated using the formula 𝑙 = 2 − 𝑑 where l is the minimum APL and d is the

density of the graph (Gulyás et al., 2011). In this case, 𝑙 = 2 −
5841

212226
≈ 1,972. Gulyás et al. also

mention that ER-randomised networks usually have an APL close to the minimum.

In the same paper, Gulyás et al. propose a formula for the maximum possible APL in a graph.

𝑙(𝑁, 𝑑) = (𝑑𝑁2 + (−𝑑 − 2) 𝑁 + 2) ∗
√4𝑑𝑁2+(−4𝑑−8)𝑁+9

3𝑁2−3𝑁
+

(1 − 3𝑑)𝑁3+(6𝑑−6)𝑁2

3𝑁2−3𝑁
+

(−3𝑑−13)𝑁+6

3𝑁2−3𝑁

where N stands for the number of vertices in the graph and d once again represents density. With

this formula, it is possible to calculate the maximum possible APL for the empirical network:

𝑙 (652,
5841

212226
) ≈ 203,407.

The second definition for small-worldness is the one proposed by Humphries & Gurney. Calculating 𝜎

with their formula results in 𝜎 =

0,4139803689756391

0,02752255
3,2033775314994393

2,568159

≈ 12,059.

The conditions 𝜎 > 1 undoubtedly holds true. The other two conditions (𝐶𝐶 ≫ 𝐶𝐶𝑟 and 𝐴𝑃𝐿 ≈

𝐴𝑃𝐿𝑟) are a little harder to define, since CC is influenced by the density of the graph, and APL is

influenced by both density and size.

Because CC is so many deviations removed from CCr, I argue that 𝐶𝐶 ≫ 𝐶𝐶𝑟 holds true. As for the

final condition, it is difficult to define ‘approximately equal’. It could be argued is that 𝐴𝑃𝐿 ≉ 𝐴𝑃𝐿𝑟

as the z-score is 𝑧 =
3,2033775314994393− 2,568159

0,008171774
≈ 77,733. However, since both APL and APLr are

close to the mathematical minimum, and far from the mathematical maximum, I would once again

argue this criterium is met.

Discussion

The results are in line with previous studies, especially those of Vitevitch (2008), who analysed

English phonology and Motter et al. (2002), who analysed semantic relations between words.

Between these studies, it is now pretty clear that entries in the mental lexicon are somehow

connected in a non-random, structured way. However, the models that have so far been used,

including mine, are possibly too simplistic in nature.

First, the method of laying connections between entries might be faulty. The Cohort model for

language processing (Marslen-Wilson, 1987) states that when hearing the first phoneme of a word,

all entries in the mental lexicon beginning with that phoneme are activated. Then, when hearing a

second phoneme, all activated entries that do no match are deactivated. After that, the same

8

happens for the third phoneme et cetera. If this is the case, weighted connections depending on how

similar the beginnings of words are may need to be made.

Second, no model has combined semantics and phonology within a single network. While both

individual components have been shown to be small-world, there is no mathematical guarantee that

the combination will show the same behaviour.

Another unanswered question is that of how this small-world structure came to be. In other words,

why is the network organised in the way that it is? One possible answer is that it is simply a result of

the way new words are created. New words can be made by combining or modifying existing words.

In this case, new words are likely to be phonologically and semantically related to existing ones. This

is mere speculation. However, this question warrants further research.

References

Barabási, A. (2015). Network science. Cambridge, UK. Cambridge University Press

Ferrer i Cancho, R. & Solé, R. (2001). The small world of human language. London, UK. The Royal

Society, 268, pp. 2261-2265

Goulden, R., Nation, P., & Read, J. (1990). How large can a receptive vocabulary be?. Applied

Linguistics, 11, 341–363

Hagberg, A., Schult, D., & Swart, P. (2008). Exploring network structure, dynamics, and function using

NetworkX. Proceedings of the 7th Python in Science Conference (SciPy2008), Gäel Varoquaux, Travis

Vaught, and Jarrod Millman (Eds), Pasadena, CA USA, p. 11–15

Humphries, M. & Gurney, K. (2008). Network ‘small-world-ness’: A quantitative method for

determining canonical network equivalence (network ‘small-world-ness’). PLoS ONE, 3(4),

p.e0002051

Jeronimus, M., Westerveld, S., van Leeuwen, C., Bhulai, S. & van den Berg, D. (2017). Japanese Kanji

characters are small-world connected through shared components. Red Hook, NY USA. IARIA

Lukatela, G. & Turvey, M. (1990). Phonemic similarity effects and prelexical phonology. Memory &

Cognition, 18(2), 128-152

Marslen-Wilson, W. (1987). Functional parallelism in spoken word-recognition. Cognition, vol. 25(1),

p. 71-102.

Motter, A., de Moura, A., Lai, Y., & Dasgupta, P. (2002). Topology of the conceptual network of

language. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 65(6, Pt. 2), p(065102)

Pinker, S. (1998).. Words and rules. Lingua, 106(1), p. 219-242

R Core Team (2017). R: A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria

9

Vitevitch, M. (2008). What can graph theory tell us about word learning and lexical retrieval? Journal

of Speech, Language, and Hearing Research, vol. 51, p. 408–422

Wasserman, S. & Faust, K. (1994). Social network analysis: methods and

applications. Cambridge, UK. Cambridge University Press

Watts, D. & Strogatz, S. (1998). Collective dynamics of small-world networks. Nature, vol. 393, p.

440–442

Appendix 1: Script for linking phonological neighbours

lexicon.py

Casper van Velzen, University of Amsterdam, 11030275

creates a network of words linked if they are phonological neighbours

requires the networkX package to work

import networkx as nx

import csv

file with phonological transcriptions

inputfile = 'transcriptions.csv'

initiate empty graph

network = nx.Graph()

prev_word = ""

load file with phonological transcritions

with open(inputfile, encoding='utf-8') as csvfile:

 # create node in network for every word

 for i, word in enumerate(csvfile):

 # test for duplicate words

 if word != prev_word:

 l = list(word.rstrip())

 for n, char in enumerate(l):

 # count long vowels as one phoneme

 if char == ":":

 l[n-1] = l[n-1] + l[n]

 del l[n]

 network.add_node(i, ipa=list(word.rstrip()))

 prev_word = word

check for minimal pairs

for j in range(len(network)):

 for k in range(j + 1, len(network)):

 word1 = network.nodes[j]['ipa']

 word2 = network.nodes[k]['ipa']

 lenght1 = len(word1)

10

 lenght2 = len(word2)

 # check for minimal pair when substituting phoneme

 if lenght1 == lenght2:

 ndiff = 0

 for n, phoneme in enumerate(word1):

 if word2[n]!=phoneme:

 ndiff+=1

 if ndiff == 1:

 network.add_edge(j, k)

 print(str(word1) + ' ' + str(word2))

 # check for minimal pair when subtracting phoneme

 elif lenght1 - 1 == lenght2:

 ndiff = 0

 # remove every phoneme one by one to check for match

 for n, phoneme in enumerate(word1):

 # convert str to list so it is mutable

 l = list(word1)

 # remove one phoneme

 del(l[n])

 newstr = "".join(l)

 if newstr == word2:

 ndiff+=1

 if ndiff == 1:

 network.add_edge(j, k)

 print(word1 + ' ' + word2)

 # check for minimal pair when adding phoneme

 elif lenght2 - 1 == lenght1:

 ndiff = 0

 # remove every phoneme one by one to check for match

 for n, phoneme in enumerate(word2):

 # convert str to list so it is mutable

 l = list(word2)

 # remove one phoneme

 del(l[n])

 newstr = "".join(l)

 if newstr == word1:

 ndiff+=1

 if ndiff == 1:

 network.add_edge(j, k)

 print(word1 + ' ' + word2)

11

edges = network.number_of_edges()

print("Number of nodes: " + str(nx.number_of_nodes(network)))

print(edges)

get the biggest connected component

biggest_comp = max(nx.connected_component_subgraphs(network), key=len)

nodes = nx.number_of_nodes(biggest_comp)

edges = biggest_comp.number_of_edges()

apl = nx.average_shortest_path_length(biggest_comp)

cc = nx.average_clustering(biggest_comp)

print("Biggest comp nodes: " + str(nodes))

print("Number of edges: " + str(edges))

print("APL: " + str(apl))

print("CC: " + str(cc))

Appendix 2: Script for ER-randomisation

erdos_renyi.py

Casper van Velzen, University of Amsterdam, 11030275

generates random graphs and writes relevant statistics to a csv

requires the networkX package to work

import networkx as nx

import csv

number of nodes

n = 652

chance to connect two nodes (nr of connections / max number of connectons)

p = 5841 / ((n * (n - 1)) / 2)

print(p)

nr_of_graphs = 1000

outputfile = 'er_phonoclx.csv'

data = {}

with open(outputfile, 'w', newline='') as csv_file:

 writer = csv.writer(csv_file)

 for i in range(nr_of_graphs):

 print("Graph nr: " + str(i))

 G = nx.fast_gnp_random_graph(n, p, seed=i)

 print("Number of nodes (full): " + str(nx.number_of_nodes(G)))

 print("Number of edges (full): " + str(nx.number_of_edges(G)))

 data[i] = {}

 biggest_comp = max(nx.connected_component_subgraphs(G), key=len)

 nodes = nx.number_of_nodes(biggest_comp)

12

 print("Biggest comp nodes: " + str(nodes))

 data[i]["Big_comp_nodes"] = nodes

 edges = nx.number_of_edges(biggest_comp)

 print("Biggest comp edges: " + str(edges))

 data[i]["Big_comp_edges"] = edges

 apl = nx.average_shortest_path_length(biggest_comp)

 print("APL: " + str(apl))

 data[i]["APL"] = apl

 cc = nx.average_clustering(biggest_comp)

 print("CC: " + str(cc))

 data[i]["CC"] = cc

 print("***")

 row = []

 for key, value in data[i].items():

 row.append(value)

 writer.writerow(row)

