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SUMMARIES 

ENGLISH 

My thesis presents the construction of a bidirectional long short-term memory neural network for              

pitch estimation in human speech. Pitch estimation is a challenging task and state-of-the-art             

methods have not achieved perfection yet. Dealing with octave errors and the voicing decision is               

part of the task. Candidates for the pitch are generated by the debiased autocorrelation function               

(debiased ACF) (Boersma 1993) and the network is trained in choosing the correct candidate on a                

database consisting of recorded speech and the corresponding laryngograph signal (Atake et al             

2000), which is treated as a ground truth. After training, the network is evaluated against the                

algorithm currently implemented in Praat. It makes more errors in choosing the correct candidate              

for the pitch, but fewer errors in its voicing decision than Praat does. It is also discovered that                  

training in batches rather than online leads to slightly better results in this task. The results are                 

promising, especially on the voicing decision, but more research is needed to be able to make the                 

network better than the debiased ACF in Praat. 

 

 

DUTCH 

In mijn scriptie heb ik een bidirectional long short-term memory neuraal netwerk gemaakt om de               

toonhoogte in menselijke spraak mee te schatten. Het schatten van de toonhoogte is moeilijk en de                

beste methodes kunnen het nog niet foutloos. Omgaan met octaafsprongen en de            

stemhebbendheidsbeslissing hoort bij deze taak. Kandidaten voor de toonhoogte worden          

gegenereerd met de debiased autocorrelatiefunctie (debiased ACF) (Boersma 1993) en het netwerk            

wordt getraind op het kiezen van de juiste kandidaat met behulp van een database met opgenomen                

spraak en het bijbehorende laryngograaf signaal (Atake et al 2000), dat gebruikt wordt als ground               

truth. Na het trainen wordt het netwerk vergeleken met het huidige algoritme in Praat en er blijkt                 

dat het netwerk meer fouten maakt bij het kiezen van de juiste kandidaat, maar minder fouten                

maakt bij de beslissing over de stem dan Praat. Ook bleek dat het trainen van het netwerk in                  

batches hogere resultaten opleverde dan één voor één. De resultaten zijn veelbelovend, vooral op              

de stemhebbendheidsbeslissing, maar er is meer onderzoek nodig om het netwerk beter te kunnen              

maken dan de debiased ACF in Praat. 
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Debiased autocorrelation and a bidirectional LSTM network for pitch         

estimation of speech sounds. 

 

J.B. Bosman 

University of Amsterdam, 28-06-2019 

 

ABSTRACT This article presents the construction of a bidirectional long short-term memory neural network for               

pitch estimation in human speech. Pitch estimation is a challenging task and state-of-the-art methods have not                

achieved perfection yet. Dealing with octave errors and the voicing decision is part of the task. Candidates for the pitch                    

are generated by the debiased autocorrelation function (debiased ACF) (Boersma 1993) and the network is trained in                 

choosing the correct candidate on a database consisting of recorded speech and the corresponding laryngograph signal                

(Atake et al 2000), which is treated as a ground truth. After training, the network is evaluated against the algorithm                    

currently implemented in Praat. It makes more errors in choosing the correct candidate for the pitch, but fewer errors                   

in its voicing decision than Praat does. It is also discovered that training in batches rather than online leads to slightly                     

better results in this task. The results are promising, especially on the voicing decision, but more research is needed to                    

be able to make the network better than the debiased ACF in Praat. 

 

The code for this work can be found at https://github.com/JonaBenja/pitch_lstm. 

I. INTRODUCTION 

THEORETICAL FRAMEWORK 

Periodic sounds contain a fundamental frequency (F0), which is defined as the number of              

periods per second of the sound signal. It can be computed by taking the inverse of the                 

period of the sound wave. The term ‘pitch’ refers to the perceptual quality of a fundamental                

frequency. In contrast to pure periodic sounds, speech sounds are not periodic. Therefore a              

fundamental frequency is not present within speech sounds but humans nevertheless do            

perceive a pitch in these speech sounds. The task of estimating this pitch is challenged by                

many difficulties.  

Pitch estimation has been approached by many researchers over many years and            

has been referred to as pitch estimation techniques, pitch extraction techniques, pitch            
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determinations or fundamental frequency estimations. One of the difficulties of this task is             

the potential noise in the sound signal. This noise can interfere with the sound signal and as                 

a result the sound waves will be different, which influences the pitch estimation.  

Another problem is about the subharmonics of sounds. A sound of 100 Hz has a               

period of 10 ms, but a period of 20 ms would also fit the signal. In this way, a pitch tracking                     

algorithm could erroneously propose a frequency of 50 Hz instead of the correct 100 Hz.               

This problem is referred to as an octave error.  

A third challenge is the voicing decision. The pitch tracking methods need to decide              

whether a frame is voiced or voiceless because only in voiced frames a pitch is perceived. 

 

THE PITCH DETECTION METHOD IN PRAAT 

A lot of different methods for pitch detection have been proposed (Gerhard 2003). They              

mainly operate in either the time or frequency domain (Kedem 1986), (Piszczalski & Galler              

1979), (Dorken & Nawab 1994), (Flanagan 1965) and (Noll 1967). Other known pitch             

tracking algorithms are TEMPO (Kawahara, Katayose, de Cheveigne & Patterson 1999) and            

RAPT (Talkin 1995). Regarding the aim of this article (retrieving better results than the              

algorithm currently implemented in Praat on estimating the pitch of speech sounds in a              

database), the algorithm in Praat will be described briefly.  

The method used in Praat consists of two parts: generating the set of candidates for               

the possible pitch estimate for each frame in a spoken sentence and choosing the best               

candidate out of this set. The autocorrelation method is used for the first part.  

Autocorrelation is the cross-correlation of a sound with itself. The autocorrelation           

function is computed from a windowed sound signal and for each local peak, a candidate               

with a corresponding strength for this windowed sound signal can be computed. Boersma             

(1993) improved the traditional autocorrelation method (Sondhi 1968) by dividing the           

autocorrelation function of the sound by the autocorrelation of the window. This results in              

an autocorrelation signal that is not biased due to windowing and could therefore be called               

the debiased autocorrelation function (debiased ACF). The formula for the autocorrelation           
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and the improvements are shown in formulas 1-6. First, a piece of the speech signal is                

windowed (1) with a window function (2): 

 

(1) 

 

(2) 

 

A piece of the sound  with a duration of the window length, , is taken from around 

the middle of the sound ( ).  is the time in the sound signal and ranges from 0 to the 

window length . The signal mean ( ) is subtracted from this. Then, the autocorrelation 

for the windowed sound is computed (3) as a function of the lag time of the shifted signal, 

 

(3) 

 

after which the autocorrelation for the window itself is computed (4). 

 

(4) 

 

The autocorrelation of both the sound and the window are functions of the time lag . To 

retrieve the final autocorrelation for a windowed signal, the autocorrelation of the signal is 

divided by the autocorrelation of the window (5) 

 

 (5) 
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The strengths of the candidates are computed with the formulas 6 and 7. The strength of                

the voiceless candidate is computed with formula 6, the strengths of the voiced candidates              

are computed with formula 7. 

 

(6) 

 

 

(7) 

 

The parameters silenceThreshold, voicingThreshold, octaveCost and minimumPitch are used         

in Praat to compute the best candidate for each frame. Localpeak refers to each local peak                

in the autocorrelation function and globalpeak refers to the global peak in the             

autocorrelation function. refers to the voiced candidates that correspond to the lag             

times that have the highest local strength. Minimumpitch is the pitch floor which is a               

parameter that can be set when computing the autocorrelation function. When setting this             

parameter, no candidates lower than the minimum pitch will be proposed. In Praat, the              

default value for the pitch floor is 75 Hz. 

After the generation of the candidates, the best candidate has to be selected for each               

frame. In Praat, the dynamic programming technique Viterbi is used (van Alphen & van              

Bergem 1989) and (Forney 1973). At first it seems that the best candidate for the pitch                

would be the candidate with the highest strength, but within one sound, this could lead to a                 

discontinuous pitch. The strongest candidate in a frame could be an octave lower or higher               

than the strongest candidate in the previous and following frames. This phenomenon is             

called an octave error. An attempt to suppress the occurrence of octave errors is to include                

an octave jump cost in the algorithm to compute the pitch contour. This octave jump cost is                 

based on the candidates of neighbouring frames. In this way, an octave jump is disfavoured               

and is less likely to occur in the pitch contour.  

Another problem is the voicing decision. Only voiced frames have a pitch. Therefore,             
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to compute the right pitch in a frame, the algorithm has to decide whether the frame is                 

voiced or not. Voiced frames have a stronger periodicity than voiceless frames. The             

so-called voicing decision is the hardest on edges of voiced and unvoiced parts. The              

algorithm sets a voicing threshold and if all the candidate strengths do not exceed this               

threshold, the frame is marked voiceless. Like the octave jump cost, the algorithm uses a               

voiced/unvoiced cost as well, to disfavour voice changes.  

‘YIN’ PITCH DETECTION METHOD 

The autocorrelation correlation is also used by de Cheveigne and Kawahara (2003). They             

use a basic definition of the autocorrelation function (8) and improve it in steps. The               

algorithm is called YIN. The last step involves choosing the best local estimate for each               

frame, which corresponds to choosing the best candidate in the debiased ACF in Praat. 

 

(8) 

 

where  is the time lag,  is the window size,  is the time index and  is the sound. 

de Cheveigne & Kawahara evaluate YIN over a database, using the           

electroglottograph (EGG) signal recorded alongside as a ground truth to measure the            

accuracy. YIN was evaluated against other pitch tracking methods, among which the            

debiased ACF in Praat. Only the voiced frames of the database were used in this evaluation                

and a gross error was noted when the proposed frequency deviated 20% from the              

frequency of the ground truth. According to the paper, the debiased ACF in Praat had an                

error percentage of 2.7% and YIN had an error percentage of 0.30% when tested against               

the EGG-ground truth, that was computed with the TEMPO algorithm. When the            

experiment was run again with the EGG-ground truth computed with the system in Praat,              

the gross error percentage of de debiased ACF was 2.33%. It should be noted that the                

command Praat was called with was: “To Pitch (ac): 0.01, 40, 15, “no”, 0.0, 0.0, 0.01, 0.0, 0.0,                  

800”. The default setting for this command in Praat is: “To Pitch (ac): 0.01, 75, 15, “no”, 0.03,                  

8 

https://www.codecogs.com/eqnedit.php?latex=r_%7Bt%7D(%5Ctau)%20%3D%20%20%5Csum_%7Bj%3Dt%2B1%7D%5E%7Bt%2BW%7D%20x_%7Bj%7Dx_%7Bj%2B%5Ctau%7D%0
https://www.codecogs.com/eqnedit.php?latex=%5Ctau%0
https://www.codecogs.com/eqnedit.php?latex=W%0
https://www.codecogs.com/eqnedit.php?latex=t%0
https://www.codecogs.com/eqnedit.php?latex=x%0


0.45, 0.01, 0.35, 0.14, 600”. The octave-jump cost (0.35 in the default setting) and the               

voiced/unvoiced cost (0.14 in the default setting) were thus put to zero in the YIN-method               

of de Cheveigne and Kawahara, but the debiased ACF method in Praat needs to use these                

parameters to achieve good results. A pitch floor of 40 Hz and a pitch ceiling of 800 Hz                  

were used. When the experiment is rerun with the default values for the octave-jump cost               

and voiced/unvoiced cost parameters but with the pitch range of 40-800 Hz , the debiased               

ACF in Praat reaches a gross error percentage of 0.92%. In the paper of de Cheveigne and                 

Kawahara, the sounds in the database were downsampled to 16kHz. The pitch range             

chosen by de Cheveigne and Kawahara is outside of the usual pitch range of Praat, which is                 

75-600 Hz. Lastly, the parameter very accurate in Praat was set to “no”. This all could have                 

prevented the debiased ACF in Praat from performing optimally.  

NEURAL NETWORKS 

Artificial neural networks have been proposed in the past, but they have gotten a lot of new                 

attention since 2012, when a network created by Krizhevsky, Sutskever and Hinton (2012)             

won the first place of the annual ImageNet contest. The network performed better than the               

state-of-the-art methods at that time. Since then, neural networks have been used more             

and their results have gotten better, especially in the field of Natural Language Processing.              

Neural networks performed excellent at for example speech recognition, (Hinton et al            

2012) and machine translation (Wu et al 2016). 

Neural networks are inspired by the architecture of neurons and connections in the             

brain. They consist of a number of layers made up of so-called ‘neurons’ or ‘nodes’. These                

neurons can be activated when their activation threshold is exceeded. By adjusting these             

activations and thresholds, the network can create a model that predicts at what moments              

neurons are activated. The first layer of neurons represents the input one can give the               

network, for example a digital sound sample. The last layer of the network represents the               

output, for example certain words the speech sound could mean. When the network is              

provided with a number of speech sounds together with the correct word, it can adjust the                

model to fit this data and create a model that can classify many sounds as their correct                 
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word. This is an example of supervised learning. The more quality data it gets, the better                

the network becomes.  

Neural networks can achieve a much higher accuracy when so-called ‘hidden’ layers            

are added. These ‘deep’ networks can abstract the input more and extract features that              

‘shallow’ networks cannot. 

A neural network can be used for pitch estimation. In 1989, a neural network was               

developed by Barnard, Cole, Vea and Alleva (1989) to classify speech sounds of the TIMIT               

database as “having a pitch” or “having no pitch”. The input for the network was               

information about the peaks in a windowed speech signal, combined with information            

about the local peaks in the same window . The training set for this network consisted of                 

35.000 training samples. The best result achieved was a 2.0% error rate. Although this              

article was published long before the neural network revolution described in the section             

above, its results are promising and show that temporal information is essential in             

achieving good results in speech research.  

 

RNN NETWORKS 

A way of incorporating temporal information (such as sequences of pitch candidates) into             

neural networks is by using Recurrent Neural Networks (RNN’s). RNN’s receive input            

samples in a sequence. In generating the output for a given input, these networks use the                

output information of the preceding input. The use of RNN’s is demonstrated by Ba, Mnih &                

Kavukcuoglu (2014), who created an RNN network that could recognise house numbers on             

Google Street View. Gregor, Danihelka, Graves, Rezende and Wierstra (2015) were able to             

let an RNN generate images of digits. However, the usefulness of RNN’s is challenged by the                

exploding or vanishing gradient problem, described by Bengio, Simard and Frasconi           

(1994). The core of this problem is that when the distance between the remembered              

output and current input are large, the weights and biases of the network get exponentially               

small or large and will at some point during the training process prevent the network from                
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learning. This problem can be solved by using a special kind of RNN’s, namely the Long                

Short Term Memory network. 

LSTM NETWORKS 

LSTM networks were first constructed by Hochreiter and Schmidhuber (1997). They           

consist of multiple so-called LSTM cells. These cells represent the number of steps in the               

sequence that can be remembered by the layer. Each LSTM cell consists of three gates and a                 

cell state: a forget gate, which decides how much information is remembered from the              

previous cell state; an input gate, which decides how much of the new information is added                

to the cell state and an output gate, which decides how much of the cell state is outputted                  

and passed on to the next LSTM cell. In this way, the LSTM layer remains a constant                 

information flow. This is unlike RNN cells that take all the information from their own input                

and the previous output, add them together and passes them on to the next cell. This can                 

lead to a vanishing or exploding gradient. LSTM layers avoid this problem by the constant               

flow of information and this makes them very useful for sequence training. LSTM networks              

have shown to be successful in Sak, Senior and Beaufays (2014). 

A disadvantage of the first LSTM layers can be that the information flow is only               

transferred in one direction: the direction of the given sequence. The current input will              

then only get information based on the previous input and not on the following input. This                

can be a disadvantage for some research topics, for example phoneme recognition, where             

the following phoneme can influence the realisation of the current phoneme.  

A great solution for this problem is the use of bidirectional LSTM layers (Shuster &               

Paliwal 1997). A bidirectional LSTM layer (BLSTM) receives the sequence in the given             

order, but also reverses it and adds together the outputs of both directions. In this way,                

future input is treated as past input and the network can use both information sources.               

BLSTM layers can outperform regular LSTM layers in certain contexts, like in Graves and              

Schmidhuber (2005) and Graves, Jaitly and Mohammed (2013a). Graves, Jaitly and           

Mohammed (2013b) discovered that the depth (multiple layers stacked on each other) is             

more important than the number of cells in each separate layer.  
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The architecture of a BLSTM layer suits the problem of pitch determination well. It              

is a sequential problem, since all frames in a sound follow each other, and frames further in                 

the sequence can influence frames earlier in the sequence. 

 

QUESTION AND HYPOTHESIS 

This article presents the construction of a bidirectional Long Short Term Memory network             

for pitch estimation. The candidates for the right pitch are generated by the debiased              

autocorrelation as currently implemented in Praat (Boersma & Weenink 2019). A           

bidirectional LSTM network is developed to choose the optimal patch of these candidates             

to create the best pitch contour. The question that will be investigated in this paper is: does                 

a bidirectional LSTM network select the correct pitch better than the debiased ACF in Praat               

with regards to the challenges of voicing decisions and octave errors? 

II. METHOD 

PROCEDURE 

Three networks were created in Python version 2.7.10, using Keras version 2.2.4 with a              

Tensorflow backend (version 1.13.1) on a Macbook Pro 2016 with operating system            

Mojave 10.14.5. The main goal for the network was choosing the right candidate out of a                

list of pitch candidates and their strengths. A subtask of this was the voicing decision. The                

pitch candidates and strengths for each frame were provided as input for the networks and               

the output was one of the provided candidates per frame. 

 

CORPUS AND GROUND TRUTH 

For the training of the networks, a database created by Atake et al (2000) was used. This                 

database contains utterances of 14 male and 14 female speakers who each spoke 30              

sentences, with a total of 840 sentences and a total duration of 36 minutes. These               

utterances were recorded along with an electroglottograph (EGG). The EGG was placed on             
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the throat of the participants to measure the opening and closing of the vocal cords. This                

movement of the vocal cords can be used to retrieve a signal that is more periodical than                 

regular speech recordings, since the signal is not distorted by the mouth, tongue and other               

body parts used during speaking. Speech is voiced when the vocal cords are closed and               

unvoiced when the vocal cords are open, so the voice of an utterance can be read from the                  

EGG signal. The higher degree of periodicity makes the EGG signal a sufficient candidate to               

retrieve a ground truth from, for the right candidate for the pitch of a frame as well as the                   

voice of a frame.  

Each sound signal in the database consists of 3 channels: channel 1 contains the              

speech signal, channel 2 contains the EGG signal and channel 3 contains a voicing mask for                

the utterance. This voicing mask was retrieved from the EGG signal. 

For training the network and measuring its accuracy, a ground truth is needed. The              

ground truth that was used in this research was computed from the EGG signal using the                

current algorithm in Praat. For every sentence in the corpus and for every frame in each                

sentence, the pitch value of the EGG signal that was proposed by Praat was chosen as the                 

ground truth value. For voicing decisions, the voicing mask was used. It was noticed that in                

some frames the voicing decision of the EGG signal was different from the voicing decision               

of the voicing mask. This occurred once in roughly half of the sentences, so around 400                

times in total. It can probably be explained by the fact that the candidates for the pitch were                  

computed using Praat and the voicing mask was created using another method. To be              

consistent, the voicing decision of the voicing mask was used in determining the ground              

truth values. For some frames that were labelled as voiced by the voicing mask, the EGG                

signal did not have any candidates, and thus were seen as voiceless by the EGG signal.                

These frames were seen as voiceless as well in the ground truth, since it would otherwise                

be impossible to get a voiced ground truth value for these frames. The ground truth values                

were used as training labels for the network and to measure the accuracy of both the                

current Praat algorithm and the trained neural network. 
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GENERATION OF THE CANDIDATES 

The pitch candidates were computed using the debiased ACF, as currently implemented in             

Praat. These candidates were generated from the speech signal of the corpus, with the              

default settings in Praat, that is, with the following command: “To Pitch (ac): 0.0, 75.0, 15,                

"yes", 0.03, 0.45, 0.01, 0.35, 0.14, 600.0”.  

For every frame in every sentence of the corpus, a number ranging from 1 to 15                

candidates were generated, together with the strengths of these candidates. Frames for            

which less than 15 candidates were computed, were padded with zeros (0) to make all               

frames have the same length. Every candidate list contained one voiceless candidate, but             

this candidate was removed from the input, since the values for the frequency (0) and               

strength (0) would be the same for every frame and therefore not contribute to the               

network. Every frame thus consisted of 28 elements: 14 frequency candidates and the             

corresponding 14 strengths. The parts of the speech signal that were silent were encoded              

as voiceless. The voicing mask that was included in the database was not used during the                

generation of the candidates. 

MEASURING ACCURACY 

The percentage of errors was used as a measure of the accuracy of the network. All wrong                 

decisions of the voice of a frame and all chosen pitch values that deviated more than 20%                 

from the ground truth values were considered errors. This measure was computed over a              

test set, which contained 20% of the database. The first half of the database were sentences                

spoken by females and the second half were sentences spoken by males. To prevent a bias                

for one gender, the test set contained the first 10% and the last 10% of the database,                 

resulting in an equal amount per gender. For the deep network, 20% percent of the total                

frames in de database was taken as the test set in the same way as described above. For the                   

LSTM network, this was slightly different. All frames in a sentence form a sequence that is                

fed to the LSTM network. The complete sequence has to be presented to make the network                

learn from it. It cannot be the case that a part of the sequence is in the training set and                    
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another part is in the test set. Therefore it was decided to use 20% of the total number of                   

sentences instead of the number of frames. 

NETWORK 1: DEEP NEURAL NETWORK 

INPUT 

The data contained 212.113 frames, of which 20% (42.422 frames) was used as test data.               

The training data consisted of the rest of the data (169.691 frames).  

 

OUTPUT 

The output of the network was a vector with a prediction for each of the candidates. An                 

extra element for the voiceless candidate was added, making the output vector consist of              

15 elements.  

 

ARCHITECTURE 

The first network had an input layer of 28 neurons, two deep layers of respectively 28 and                 

1000 neurons and an output layer of 15 neurons. Both deep layers were activated with a                

rectified linear activation (9). The input for the first hidden layer of 28 nodes was a matrix                 

of 28 (number of inputs) by 28 (number of nodes in layer). Each element of the input was                  

multiplied by the weights of these nodes (Wd1 a matrix of 28 by 28 weights) and a bias was                   

added (bd1, a vector of 28 biases). Each element of the vector of activations , consisting of                 

28 elements, was activated by the ReLU activation. The input for the second hidden layer of                

1000 nodes was a matrix of 28 (output of first layer) by 1000 (number of nodes in layer).                  

The input was multiplied by the weights of this layer (Wd2, a matrix of 1000 by 28 weights)                  

and a bias was added (bd2, a vector of 1000 biases). The activation of every node was given                  

as input to the ReLU-activation. 

 

(9) 
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where i ranges from 0 to the number of nodes in the layer that is activated. The output                  

layer was activated with a softmax activation (10), that resulted in a prediction for each               

output neuron. 

 

(10) 

 

where ˆpi is an output neuron, of which the number ranges from 1 to C. C is the number of                    

classes, which equals the number of output neurons and is 15 in the networks constructed               

in this paper. ˆyiis the activation of the output neuron. This activation, taken to the power of                 

e, is divided by the sum of the activations of all output neurons. The loss function was a                  

categorical cross entropy (11) due to the one-hot encoding of the models output. 

 

(11) 

 

Where ˆpcorrect is the softmax prediction of the model for the correct class.The network was               

optimized with the Adam optimizer, a variant of the Stochastic Gradient Descent optimizer,             

implemented as described in Kingma and Ba (2014) (see their article for a full description               

of the algorithm).  

TRAINING 

The network was trained for 100 epochs. In 1 epoch, all the inputs in the training data are                  

fed to the network in random order and the network adjusts its weight and bias               

parameters according to the information of the loss function and optimizer. So after 100              

epochs, that network has seen all of the input data 100 times. The training data were fed to                  

the network in a batch size of 256, which means that after every 256 inputs, the network                 

updates its weights and biases, with the information of all 256 inputs. This decreases the               

computational load since updates are done less often than if they are done after every               
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single input. After a series of training sessions, the highest accuracy for the LSTM network               

was achieved with a batch size of 256, which is why this batch size was chosen. 

NETWORK 2: BIDIRECTIONAL LSTM 

INPUT 

The data contained 840 sentences (212.113 frames), of which 20% (168 sentences, 43.404             

frames) was used as test data. The training data consisted of the rest of the data (672                 

sounds, 168.709) frames). Each sentence, a sequence of multiple frames, was seen as one              

input. The whole sequences were given to the LSTM network, but the LSTM cells receive               

one frame at the time. 

OUTPUT 

The output of the network was a vector with a prediction for each of the candidates. An                 

extra element for the voiceless candidate was added, making the output vector consist of              

15 elements.  

ARCHITECTURE 

The second network that was constructed was a bidirectional LSTM network with an input              

layer, a masking layer, two bidirectional LSTM layers and an output layer. Both LSTM              

layers consisted of 96 LSTM cells in parallel. After a series of training sessions, the highest                

accuracies for the LSTM networks were achieved with LSTM layers consisting of 96 cells,              

which is why this number of cells was chosen. Each LSTM layer was built according to the                 

following formulas (14-18) using both sigmoid (12) and hyperbolic tangent activation (13).            

Each gate and the cell state in the LSTM cells has its own weights (Wf , Wl , Wo and Wo for                      

the input and Uf , Ul , Uo and Uc for the cell state) and biases (bf , bl , bo and bc). The input is                          

fed to the LSTM cells one frame at a time. The number k is an index from 1 to the number of                      

steps in the sequence. At every step k, the information in each LSTM cell is updated. The                 

cell state c(k) is a vector with length 96 that contains the cell state of all 96 LSTM cells at                    

step k. The hidden state h(k) is a vector of length 96 that contains the output of all 96 LSTM                    
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cells at step k. The input vector z consists of 28 elements (28 candidates per frame). The                 

weights matrices for the input have a dimension of 96 (the number of cells) by 28 (number                 

of inputs) and the weight matrices for the cell state have a dimension of 96 (the number of                  

cells) by 96 (the number of cells). The bias vectors have a length of 96 (the number of                  

cells). 

 

Sigmoid activation: 

 (12) 

 

Hyperbolic tangent activation: 

 (13) 

 

where vj is a single element of the vector that is fed to the activation function. 

 

Forget gate: 

 (14) 

 

After the multiplication of the inputs with their corresponding weights and the hidden state 

with its corresponding weights, the two resulting vectors are summed elementwise, along 

with the biases of this gate. The output of the forget gate is thus a vector of length 96, 

consisting of a sigmoid number for each element in the cell state. The forget gate 

determines how much of the cell state will be forgotten. The sigmoid function in this 

formula is applied elementwise. 

 

Input gate: 

 

 (15) 
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The input gate determines how much of the current input will be added to the cell state. 

The computation of this vector is done in the same as in the forget gate. The output of the 

input gate is also a vector of length 96. The sigmoid function in this formula is applied 

elementwise. 

 

Output gate: 

 

(16) 

 

The output gate determines how much of the current cell state will be the output for the 

current LSTM cell k. The computation of this vector is done in the same as in the forget gate 

and input gate. The output of the output gate is also a vector of length 96. The sigmoid 

function in this formula is applied elementwise. 

 

Cell state update: 

 

(17) 

 

where the output of the forget gate (a vector with 96 sigmoid numbers) is multiplied 

elementwise with the previous cell state. The current cell state is updated and scaled 

elementwise with a tanh function. Then the output of the input gate (a vector with 96 

sigmoid numbers) is multiplied elementwise with the output of the tanh function. The 

result of this multiplication is summed elementwise with the result of the multiplication of 

the output of the forget gate with the previous cell state. The tanh function in this formula 

is applied elementwise. 

 

Output: 

 

 (18) 
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The current cell state is scaled elementwise with a tanh function and multiplied 

elementwise with the output of output gate to get the new hidden state and thus the output 

of the LSTM layer at the current step k. The tanh function in this formula is applied 

elementwise. 

The output layer consisted of 15 nodes for the 15 possible candidates and was              

activated with a softmax activation. The loss function used was a categorical cross entropy              

and the optimizer that was used was the Adam optimizer. 

The length of all the sounds in de database was not equal; the number of frames in                 

each sound was variable. An LSTM network needs to have inputs of the same length to be                 

trained in batches so this problem needed to be solved before the network could be               

trained. There were two possible solutions: padding each sound to an equal number of              

frames or training the network with each batch consisting of one single sound. This means               

that the weights and biases of the network are updated after every single input. Training               

the network with a batch size of 1 is usually referred to as ‘online training’. It is not clear                   

whether one of these methods performs better than the other, (Wilson & Martinez 2004)              

and (Principe, Euliano & Lefebvre 2002). Usually, padding is done by adding zeros to the               

sequence until it reaches the desired length. In this case, the pad value was a list of 28                  

zeros, representing a frame. Each sound was complemented with these lists until it had a               

length of 447 frames. By adding a masking layer to the network, the pad frames are ignored                 

during the training of the network and the padding will not trouble the training.  

To find the best results possible, the LSTM network was trained in batches and              

online to be able to compare the two solutions. 

TRAINING 

The network was trained on the padded data for 115 epochs with a batch size of 256. Using                  

a batch size of 1, the network was trained as well for 115 epochs. 
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III. RESULTS 

After training the networks, they were all evaluated on the test set. The debiased ACF in                

Praat was evaluated on the same test set. 

The accuracies of both methods were measured by comparing every frequency that            

was chosen from the speech signal with the frequency that was chosen by the EGG signal.                

Every difference between these frequencies that was larger than 20% was labeled as an              

error. Every wrong decision about the voice also counted as an error. 

The percentage of errors in all frames in the test set was measured to compare the                

methods. 

 

METHOD FREQUENCY 
ERRORS 

TOO HIGH / 
TOO LOW 
ERRORS 

VOICING 
ERRORS 

VOICED/VO
ICELESS 
ERRORS 

TOTAL 
ERRORS 

Debiased ACF 0.16% 0.07% / 0.09% 11.31% 9.91% / 

1.40% 

11.47% 

Deep network 
(batch = 256) 

0.37% 0.25% / 0.12% 7.3% 4.2% / 3.1% 7.68% 

BLSTM network 
(batch = 256) 

0.58% 0.26% / 0.32% 5.5% 2.53% / 

2.97% 

6.08% 

BLSTM network 
(batch = 1) 

0.84% 0.41% / 0.43% 8.63% 3.11% / 

5.52% 

9.48% 

 
Table 1: results of the three networks that were trained and the debiased ACF in Praat. All methods were                   
evaluated over a test set with 20% of the database. The column “Too high/too low errors” gives the                  
percentages of the frequency errors that were too high and too low. The column “Voiced/voiceless errors”                
gives the percentages of the voicing errors that were predicted as voiced but were voiceless in the ground                  
truth and vice versa. 
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IV. CONCLUSION 

A bidirectional Long Short-term Memory network was developed to choose the right pitch             

for each frame of a speech sound. The network makes fewer errors about the voice of a                 

frame, but more errors about the estimated pitch value than the method currently             

implemented in Praat. In a comparison between training in batches and online training on              

the data used in this article, it was discovered that training in batches yielded slightly               

better results. 

 

V. DISCUSSION 

The neural network that was constructed has a lower error percentage on the test set than                

the current debiased ACF in Praat. However, recall that this percentage consists of two              

parts: the errors about the voice of a frame and the errors in frequency. Table 1 shows that                  

the LSTM network made more frequency errors but made less voicing errors than the              

debiased ACF in Praat. The network alone is thus not the best method for pitch estimation,                

but it could play a role in the voicing decision, maybe replacing the parameters about the                

voice in the debiased ACF in Praat. 

The most striking result is that the deep network made fewer frequency errors than              

the LSTM network. This suggests that the LSTM network does not benefit from the memory               

information, which may be due to the fact that the output for each frame (which was the                 

information that was added to the cell state in the LSTM cell) was a place indicating which                 

candidate was chosen. This place did not correspond directly to the frequency, since the              

same frequency (or roughly the same) could be the first candidate in one frame but the                

fourth candidate in another. This problem could be solved by using an output that is the                

same for all inputs and does not depend on the candidates in the input. As suggested by                 

Paul Boersma, an output layer of 100 nodes each representing a frequency in between 1               

and 1000 at a 10 Hz interval could be used. The frequency information will then be stored                 

in the cell state and contribute more to the network than the place information. 
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The deep network had two deep layers, one existing of 1000 nodes. This large              

number of nodes enables the deep network to make more abstractions of the input data               

than a single LSTM layer can. With these abstractions, the network could determine more              

precisely which features are most important in getting good results. This might explain the              

fact that the deep network made less frequency errors than the LSTM network.             

Nevertheless, it was expected that the LSTM network would benefit more from the memory              

information than the deep network would benefit from the large number of nodes in the               

hidden layer. 

The LSTM network overfitted the training data at the end of the training. This              

occurred earlier in the online training. Overfitting can reduce performance on a test set.              

Regularization is shown to reduce overfitting (Zaremba, Sutskever & Vinyals 2014) and            

(Merity, Keskar & Socher 2017), but it did not improve performance on the test set in this                 

study. Using a few regularization methods, the network even achieved lower results on the              

test set. More research could be done to find the best way of applying regularization to the                 

networks constructed in this study. The use of more data could help the network have a                

lower chance on overfitting and achieve better results. 

Lastly, since not all frames had 15 candidates, some frames were padded to 15 with               

zeros, which did not contribute to the network. It could be the case that these pads have                 

prevented the networks from performing optimally.  
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