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Abstract. This paper argues that if phonological and phonetic phenomena found in language data and 
in experimental data all have to be accounted for within a single framework, then that framework will 
have to be based on neural networks. We introduce an artificial neural network model that can handle 
stochastic processing in production and comprehension. With the “inoutstar” learning algorithm, the 
model is able to handle two seemingly disparate phenomena at the same time: gradual category 
creation and auditory dispersion. As a result, two aspects of the transmission of language from one 
generation to the next are integrated in a single model. The model therefore attacks the hitherto 
unsolved problem of how symbolic-looking discrete language behavior can emerge in the child from 
gradient input data from her language environment. We conclude that neural network models, besides 
being more biologically plausible than other frameworks, contain a promise for fruitful theorizing in 
an area of linguistics that traditionally assumes both continuous and discrete levels of representation. 

1. Why a comprehensive model must be based on neural networks 

What will be the ultimate model of phonology and phonetics and their interactions? It will 
have to be a model that accounts for at least four types of valid behavioral data that have been 
assembled, namely 1) the generalizations that phonologists have found within and across 
languages, 2) the phenomena that psycholinguists and speech researchers have found 
observing speakers, listeners, and language-acquiring children, 3) the mergers, splits, chain 
shifts and other sound change phenomena found by historical phonologists and 
dialectologists, and 4) the phenomena that have been observed when languages come in 
contact, such as loanword adaptations. Besides having to account for all these types of 
behavioral data, the model will have to be compatible with what is known about the biology 
of the human brain, because that is where language is produced and comprehended. In this 
paper we argue that the ultimate model has to be reductionist, i.e. that it has to consist of 
artificial neural networks. We provide a first proposal of a neural network model that can 
handle two important aspects of the transmission of a sound system from one generation to 
the next, namely category creation and auditory dispersion. 

1.1. A model of phonological and phonetic representations and knowledge 

If the model contains levels of representation, it may look like Fig. 1, which can be thought of 
as containing the minimum number of levels needed for a sensible description: phonetics 
seems to require at least an Auditory Form (AudF, specifying a continuous stream of sound) 
and an Articulatory Form (ArtF, specifying muscle activities), and phonology seems to 
require at least an Underlying Form (UF, containing at least lexically contrastive material) 
and a Surface Form (SF, containing a whole utterance divided up in prosodic structure such as 
syllables); the Morpheme level connects the phonology to the syntax and the semantics in the 
lexicon. 
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Fig. 1.  Levels of representation and stored knowledge in a model of phonology and phonetics. 

 The five levels in Fig. 1 are a simplified combination of what phonologists have been 
proposing in models of phonological production (e.g. refxx structuralism, Kiparsky 1982) and 
what psycholinguists have been proposing in models of comprehension (e.g. Cutler 19xx) and 
production (e.g. Levelt, Roelofs and Meyer 1999). These specific five levels, and the special 
way in which they are connected in Fig. 1, were proposed by Boersma (1998, 2007) and 
Apoussidou (2007). In numerous papers, Boersma and co-workers investigated the capability 
of this “Bidirectional Phonology and Phonetics” (BiPhon) model to account for experimental 
as well as linguistic data (for an overview, see Boersma 2011). The model hitherto used the 
decision mechanism of Optimality Theory (OT) and can therefore be called BiPhon-OT. The 
present paper introduces the neural-network (NN) edition of the model, which we call 
BiPhon-NN. 
 Language users have knowledge of the relationships between levels of representation. In 
Fig. 1, such relationships exist between adjacent levels only, so that the language user has 
knowledge about sensorimotor, cue, faithfulness (phonological) and lexical relationships. The 
language user also has knowledge about restrictions within levels: the articulatory, structural 
and morpheme-structure restrictions. In OT, all this knowledge is represented as a grammar 
consisting of ranked constraints; in NN models, this knowledge is represented as a long-term 
memory consisting of connection weights. 

1.2. Phonological and phonetic processes 

A comprehensive model has to take into account the behavior of the speaker, the listener, and 
the learner. Figure 2 shows the various processes that can be distinguished when travelling 
the levels of representation of Fig. 1. Globally, the path from AudF to Morphemes following 
the upward arrows in Fig. 2 is comprehension, i.e. the task of the listener, and the path from 
Morphemes to ArtF following the downward arrows is production, the task of the speaker. 
More locally, there are partial processes. The local mapping from UF to SF is phonological 
production, an example being the mapping from an underlying two-word sequence |an#pa| 
(“#” denotes a word boundary) to the phonological surface structure / .am.pa./  (“.” denotes a 
syllable boundary) in a language with nasal place assimilation. At the interface between 
phonetics and phonology, the local mapping from AudF to SF is (prelexical) perception, an 
example being the mapping from concrete continuous formant values to abstract discrete 
vowel categories. 
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Fig. 2.  Processes in a comprehensive model of phonology and phonetics. 

 The partial processes and their acquisition have been modeled in various frameworks. 
Phonologists have been modeling phonological production within OT since Prince and 
Smolensky (1993), and its acquisition since Tesar and Smolensky (1998). The acquisition of 
prelexical perception was modeled with neural networks such as the perceptron by refxx, and 
within BiPhon-OT by Boersma (1997) and Escudero and Boersma (2004). [xx Norris (1994) 
geeft met Shortlist een NN implementation van SF>UF mapping] The present paper in section 
5 handles the perceptual magnet effect, i.e. perceptual warping as an early stage of category 
creation in the AudF-to-SF mapping, which was observed in the lab by Kuhl (1991) [xx not 
really any longer; we now do category creation]. The emergence of this effect was modeled 
before with neural networks by Guenther and Gjaja (1996) and with BiPhon-OT by Boersma, 
Escudero and Hayes (2003). 
 The way in which the language user’s knowledge is represented in Fig. 1 suggests that 
the same knowledge is used for both directions of processing in Fig. 2, i.e. for comprehending 
and producing speech. For OT, this bidirectionality was first argued for by Smolensky (1996). 
Specifically, it has often been argued that the same structural constraints play a role in 
comprehension as well as in production (Tesar 1997; Tesar & Smolensky 1998, 2000; 
Boersma 1998, 2000, 2007, 2009; Pater 2004), sometimes with very dissimilar effects 
(Boersma and Hamann 2009). For the present paper it is relevant that the “cue knowledge” at 
the interface of phonology and phonetics is bidirectional, i.e. used in both prelexical 
perception and phonetic implementation (Boersma 2009): the same knowledge that allows 
you to perceive a loud high-frequency noise as / s/  forces you to implement the phoneme / s/  
as a sound with a loud high-frequency noise. In section 6 we handle the phenomenon of 
auditory dispersion, i.e. the evolution of optimal distances at AudF between the members of 
phoneme inventories at SF (refxx). This was modeled before within exemplar theory by 
Wedel (2004: 140–169, 2006: 261–269) and in BiPhon-OT by Boersma and Hamann (2008); 
in both cases, bidirectionality was a crucial element of the explanation, as explained in detail 
in §6. 
 Thus, the perceptual magnet effect and auditory dispersion were both modeled before, 
although never within the same framework [xx what about BiPhon-OT then?]. 
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1.3. The need to model it all at the same time 

There are at least two reasons why one would want to model all the processes of §1.2 within a 
single comprehensive model. One reason is that there are phenomena whose complete 
explanation necessarily requires all levels of representation, and the other reason is that there 
seem to exist processes that require an interaction between levels that are far away from each 
other in Fig. 1 or 2. We discuss these reasons now, with the goal of finding candidate 
comprehensive modeling frameworks. 
 
1.3.1. Comprehensive processes. There exist seemingly unitary processes whose 
explanation nevertheless requires all levels of representation. One such process is loanword 
adaptation, where the input (the foreign stream of sound that impinges on the borrower’s ear) 
and the output (the borrower’s phonetic production) are the only direct observables. If one 
wants to understand this phenomenon solely on the basis of acquired L1 behavior, one has to 
assume that the borrower starts by filtering the incoming auditory form through L1-specific 
cue knowledge and L1-specific structural constraints into a phonological surface structure 
(see Figs. 1 and 2), then stores it as a new morpheme in the lexicon with an appropriate 
underlying form. When speaking, the borrower takes this morpheme and underlying form, 
filters the latter with her L1-specific phonological knowledge, then filters the result again with 
her phonetic implementation device, which computes an auditory form and an articulatory 
form, perhaps filtered by L1-specific articulatory restrictions. An explanation of loanword 
adaptation, therefore, requires all arrows in Fig. 2, as has been argued in detail by Boersma 
and Hamann (2009). 
 Another phenomenon whose explanation requires all levels of representation is first-
language acquisition. This happens much slower than the initial adaptation of a loanword, but 
is also much more central to linguistic theory and experimentation. The search, therefore, is 
for a single comprehensive framework. 
 
1.3.2. Distant interactions The arrows in Fig. 2 only connect levels that are adjacent. Thus, 
an incoming sound at AudF first activates a representation at SF, which then activates a 
representation at UF, which then activates one or more morphemes at the topmost level; there 
are no more direct routes that skip a level. 
 However, there is evidence that the partial processes are not entirely sequential. Feedback 
from “later” levels of representation to “earlier” levels in processing has been identified 
experimentally and theoretically in several locations, and several models that exhibit such 
interactions have already been proposed. In comprehension, lexical influence (from the 
Morpheme level) back to prelexical perception (AudF-to-SF) was found in listeners by 
Ganong (1980), and modeled with neural networks by McClelland and Elman (1986) and 
with BiPhon-OT by Boersma (2009, 2011); likewise, semantic considerations above the 
Morpheme influence the access of underlying forms in the mapping from SF to UF (Warner 
and Warner 1970). In production, allomorph selection is sometimes determined by ‘later’ 
considerations at SF, such as that between |vjø| and |vjɛj| ‘old-MASC’ in French. Likewise, 
phonetic considerations such as articulatory effort (at ArtF) and cue quality (between SF and 
AudF) may influence choices in the phonology (between UF and SF), as modeled by Boersma 
(1998, 2007). Also, cue knowledge and articulatory constraints must interact with each other 
in the phonetic implementation process. 
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 As a result of these examples of interactive processing, most of the arrows in Fig. 2 are 
two-sided. Levels that are activated “later” in comprehension or production can thereby 
influence “earlier” levels backwards. In NN models, interactivity is implemented by having 
activity spread bidirectionally (McClelland and Elman 1986); in BiPhon-OT the interactivity 
is implemented by having candidates be entire paths from AudF to Morpheme in 
comprehension or from Morpheme to ArtF in production (Boersma 2007, 2009, 2011; 
Apoussidou 2007; Berent et al. 2009). 
 The existence of such feedback in processing is controversial in some locations 
(McQueen, Cutler and Norris 2000 deny the influence of the lexicon on prelexical perception, 
and Hale and Reiss 20xx deny any influence of phonetic considerations on phonological 
production). For the time being, however, we assume interactivity is everywhere. The need 
for a comprehensive model does not depend on whether such interactivity is only apparent or 
is an integral element of the underlying mechanism. 

1.4. Choosing the framework that models it all: neural networks 

When discussing existing models in §1.1 through §1.3, we identified three frameworks: 
neural networks, exemplar theory, and OT. 
 At first sight, BiPhon-OT might seem to be the best framework, because it provided an 
account of all of the processes mentioned. However, this is deceptive, because it did not 
provide an account of all the processes combined. When modeling category creation 
(Boersma 1998: ch.8; Boersma, Escudero and Hayes 2003) the BiPhon model shares with NN 
category creation models (refxx, Guenther and Gjaja 1996) and noncomputational emergentist 
work (refxx, Blevins 2004) the assumption that phonological categories emerge from the 
distributions of auditory forms in the child’s environment. Both computational models 
successfully arrive at a stage of continuous perceptual warping (an incoming sound is 
received as a slightly different sound because of distributional learning), but have to stop 
there, because linguistic modeling in e.g. OT requires that categories are discrete. This 
discrepancy between the gradiency of category creation that is needed in an emergentist 
model, and the discreteness of categories that is needed to do OT phonology, means the 
failure of OT as a comprehensive framework for emergentist phonology and phonetics. 
Moreover, OT’s biological plausibility is low, because it works with nearly infinite lists of 
candidates, which is especially problematic if one has five levels of representation; typically, 
the number of candidate paths to evaluate is exponential in the length of the input (both in 
comprehension and in production) as well as exponential in the number of levels of 
representation. 
 Exemplar theory (refxx) might do better with respect to the transition between continuous 
and discrete (massive storage of single events leads to observed continuous knowledge), but 
despite its long existence the theory has not yet been able to model even the most 
straightforward of phonological processes, such as productive nasal place assimilation 
(Boersma 2012). 
 Which leaves neural network modeling. If Fig. 1 is implemented in a neural network, 
each of the five levels of representation should be thought of as a large set of network nodes, 
each of which can be active or inactive. The pattern of activity of these nodes forms the 
current representation at that level. The processes of Fig. 2 can be regarded as the spreading 
of activity between and within levels; the knowledge in Fig. 1 is stored as connection weights, 
i.e. the strengths of the connections between the nodes. We show in section 5 that if the 
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elements of representations are distributed over multiple nodes, they can start out as 
continuous and gradually come to exhibit more discrete behavior during acquisition, thus 
ensuring the compatibility between underlying continuity and observed discreteness. One and 
the same framework, then, succeeds in accounting for both symbolic and subsymbolic 
behavior. As far as biological plausibility goes, neural networks form the best of the three 
frameworks as well: the number of connections in a NN model tends to rise linearly with the 
number of levels of representation, and linearly or quadratically with the size of the 
representations. 
 We confess here that we choose NN modeling not only because it wins out by 
elimination, but also because it is reductionist: in the end, it is uncontroversial that humans 
represent language in neural networks in their brains, and both OT and exemplar theory work 
at a higher level of abstraction. If the abstractions fail, one has to go one level of concreteness 
deeper. 
 Let’s proceed to looking at the ingredients of our linguistic NN model. 

2. Nodes, connections, weights and activities 

2.1. A toy example: phonological production 

We introduce artificial neural networks by looking at a traditional toy example of 
phonological production. Using terms that are familiar from both the neural network literature 
(refxx) and OT (Prince and Smolensky 1993: xx), the Underlying Form is the input of this 
mapping and the Surface Form is the output. 
 Our toy language has only four possible underlying utterances, each of which consists of 
two words. The first word is either underlyingly |an| or |am|, and the second word is either 
|pa| or |ta|. The four underlying utterances are therefore |an#pa|, |an#ta|, |am#pa| and 
|am#ta|, where “#” stands for the word boundary. In the surface form, the language exhibits 
nasal place assimilation in a manner reminiscent of Dutch: an underlying coronal nasal tends 
to assimilate to the place of any following consonant, so that underlying |an#pa| becomes 
/ ampa/  on the surface; meanwhile, an underlying labial nasal tends not to assimilate: |am#ta| 
becomes / amta/ . As in real languages, the tendencies are not true 100% of the time: the 
assimilation of the coronal nasal is optional, and likewise, the labial nasal does assimilate in a 
small minority of cases. For our example we suppose that underlying |an#pa| becomes 
/ ampa/  on the surface 70% of the time, and the “faithful” form / anpa/  30% of the time, and 
that underlying |am#ta| becomes faithful / amta/  95% of the time, and assimilated / anta/  5% 
of the time. 
 This probabilistic state of affairs is a situation that (Stochastic) OT is known to be able to 
represent (e.g. Boersma 2008), because an existing learning algorithm for Stochastic OT (the 
“GLA”) typically turns a learner into a probability matcher. In comprehension, an auditory 
form that was intended by the speaker as the surface form A in 70% of the cases and as the 
surface form B in 30% of the cases, will come to be perceived by the GLA perception learner 
as A in 70% of the cases and as B in 30% of the cases (Boersma 1997). In production, an 
underlying form that is produced in the learner’s language environment as C in 70% of the 
cases and as D in 30% of the cases will come to be produced by the GLA production learner 
as C in 70% of the cases and as D in 30% of the cases (Boersma and Hayes 2001). Our NN 
model should be able to replicate this or a similar kind of optimal behavior. 
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 There are several ways to represent this toy language in a neural network. The most 
straightforward and OT-like (and probably least realistic) way is to represent each possible 
underlying utterance (input) with one node, and each possible output utterance as one node. 
This is done in Fig. 3, where each of the four possible underlying forms shows up as a single 
node along the top and each of the four surface candidates shows up as a single node along 
the bottom. 

 

Fig. 3. A network that performs phonological production. 

 Biologically, a node can be regarded as representing a neuron (or small group of neurons) 
in the cerebral cortex. Representing an entire linguistic form with a single node (a local 
representation), as we do here, is an unrealistic oversimplification, employed here only for 
purposes of illustration; more realistic distributed representations, where a single 
phonological category is represented by multiple nodes, appear in §4. 
 In Fig. 3, each node is visualized as a dotted circle. Each of the four UF nodes is 
connected to each of the four SF nodes, although only six of the 16 connections are visible. 
Biologically, a connection corresponds to a synapse (point of contact) between an outgoing 
branch of one neuron and a receiving branch of another neuron. Such a synapse is 
unidirectional: it permits an electric signal to flow from one neuron to another. In general, 
therefore, the total strength of the synapses that carry signals from neuron A to neuron B is 
not equal to the total strength of the synapses that carry signals from neuron B to neuron A. 
Nevertheless, we maintain in this paper the simplification that the strength of the connection 
from node A to node B equals the strength of the connection from node B to node A, and that 
it can therefore be called the strength of the connection between nodes A and B. Such 
bidirectional connections are known to provide stability in neural network models (refxx, 
Hopfield 1982), and they guarantee the bidirectionality (§1.2) of the BiPhon model, thus 
providing the desired dispersion effect in §6. The present paper can do with, and indeed 
crucially employs, bidirectional connections; if in future modeling this simplification turns 
out to be untenable, birectionality should then be dispensed with. 
 In NN modeling, connection strengths are called weights. The weight of the connection 
between the input node |an#pa| and the output node / anpa/  is 0.30, and this is visualized in 
Fig. 3 in two ways: the number 0.30 is written next to this line, and the thickness of the 
connection line is 0.30. Biologically, the connection weight indeed corresponds to the 
thickness of the synapse, i.e. the area with which the sending neuron is connected to the 
receiving neuron. When a neuron fires, a neuron with which it has a thick (strong) synapse 
will be influenced stronger than a neuron with which it has a thinner (weaker) synapse. In the 
figure, therefore, thicker lines denote stronger information flows than thinner lines. For 
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instance, the weight of the connection between |an#pa| and / ampa/  is 0.70, which is stronger 
than that between |an#pa| and / anpa/  because the underlying form |an#pa| should send 
stronger signals to / ampa/  than to / anpa/  in this toy language. Likewise, the weight of the 
connection between |an#pa| and / anta/  is zero, because we never want |an#pa| to be realized 
as / anta/ ; this zero-weight connection is not visible in the figure (the line has zero width). 
Also, an underlying “homorganic” |an#ta| is always realized as / anta/ , and this is reflected 
with the number 1.00 next to the relevant connection line in the figure. We will show that 
with these chosen connection weights the network in Fig. 3 can indeed simulate the data of 
the toy language if the network has four common additional properties: all-or-none activation 
of the input nodes (§2.2), additive excitation of the output nodes (§2.3), a linear excitation-to-
activity function (§2.4), and a linear activity-to-probability function (§2.5). We illustrate these 
concepts with Fig. 4, which shows the production of underlying |an#pa|. 

 

Fig. 4. The production of underlying |an#pa|. 

2.2. Activity of the input nodes 

To compute how the network handles an incoming underlying form, we apply an activity 
pattern to UF and compute from it the activity pattern that will arise at SF. To see what the 
network does to an underlying |an#pa|, we activate the |an#pa| node by setting its activity to 
1.00. This is shown in two ways in Fig. 4: by painting the whole node in black, and (in this 
figure only) by drawing the number 1.00 above the node. At the same time, we set the 
activities of the three remaining underlying forms to 0, which is indicated in the figure by not 
painting these three nodes. 
 Biologically, an activity can be thought of as a firing rate. A node with an activity of 1.00 
can be seen as a neuron (or group of neurons) with a maximum firing frequency of, say, xx 
spikes per second (refxx); a node with an activity of 0 can be seen as a neuron (or group of 
neurons) with a minimum firing frequency (say, xx spikes per second; refxx). 
 The circles for the UF nodes in Fig. 4 look different from those for the SF nodes. In the 
phonological production process the UF level is the input, so that the activities of the four UF 
nodes will be held constant during evaluation. In neural-network terminology, the UF nodes 
are clamped (kept fixed). This is indicated in the figure by the circles for the UF nodes now 
having solid rather than dotted edges. By contrast, the SF level is the output of the process, so 
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that the activities of the four SF nodes must be free to adapt themselves to the activities of the 
input nodes; dotted circles in the figure visualize the fact that the output nodes are unclamped. 

2.3. Excitation of the output nodes 

When an input node is activated, as node |an#pa| is in Fig. 4, the information about its 
activity will spread towards the nodes with which it is connected: the activity will excite every 
connected node to some extent. For instance, in Fig. 4 node |an#pa| has activity 1.00 and the 
connection between |an#pa| and / ampa/  has weight 0.70. The amount to which |an#pa| will 
excite / ampa/  is the product of the input activity and the connection weight, i.e. 1.00!0.70 = 
0.70. Likewise, node |am#pa| has activity 0 and the connection between |am#pa| and / ampa/  
has weight 1.00; |am#pa| will therefore excite / ampa/  by an amount 0!1.00 = 0. Node |an#pa| 
excites / ampa/  by an amount 0 (the activity of |an#pa|) times 0 (the weight of the connection 
from |an#pa| to / ampa/ ), which is 0!0 = 0, and so does |am#ta|. 
 Biologically, these four excitations can be regarded as “post-synaptic potentials”, rises in 
the potential (in millivolts) of the membrane of the receiving neuron. These rises tend to be 
additive, i.e. all the small excitations add up to yield the total excitation of the receiving 
neuron (refxx). Artificial neural network models also tend to assume additive excitation. 
Thus, the total excitation of / ampa/  becomes 0.70 + 0 + 0 + 0 = 0.70. In a formula, the 
excitation of the output nodes, i.e. nodes 5 through 8, can be computed as 

 ej = wijai (for j = 5..8)
i=1

4

!  (1) 

where ai  is the activity of UF node i, and wij  is the weight of the connection between UF 
node i and SF node j. 

2.4. Activity of the output nodes 

When a node is excited, it becomes active itself. Biologically, this corresponds to the fact that 
if the membrane potential of a neuron rises, the probability that it will fire increases; in a 
continuous (and simplified) view of neuronal activity (refxx) this means that if the time-
averaged membrane potential rises, the firing frequency of the neuron will rise as well. The 
simplest assumption about the relation between excitation and activity is that it is linear, i.e. 
the activity rises and falls with the excitation by a constant factor. If this factor is 1, the 
activity of an SF node in our example becomes equal to its excitation: 

 aj = ej (for j = 5..8)  (2) 

As a result, activating |an#pa| causes an activity of 0.70 in node / ampa/ . This number is 
written over the node in the figure and is also visible as the size of the black disk in that node. 
Likewise, activating |an#pa| causes an activity of 0.30 in node 5, which is visualized in the 
figure as the small black disk in that node. 
 Other excitation-to-activity functions are possible. If one wants to make sure that the 
activities of the SF nodes stay between 0 and 1 (which seems reasonable, given the biological 
interpretation of these limiting values as the minimum and maximum possible firing 
frequency), one could simply clip the activity between those values, maintaining linearity of 
all activities between 0 and 1: 
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 aj = max 0, min ej ,1( )( ) (for j = 5,8)  (3) 

or one could apply a “top-sigmoid” clipping, which is linear for small excitations and goes to 
1 smoothly for large excitations: 

 aj = max 0, 2
1+e−2ej

−1
"

#
$

%

&
' (for j = 5..8)  (4) 

In the end, combining the assumption of additive excitation (the contributions from the four 
underlying forms are added up) and the assumption of a linear excitation-to-activity function 
(the activity of an output node is a linear function of its excitation) causes the activity of an 
SF node to become the sum of the activities from the input nodes, weighted by the weights of 
the connections. 

2.5. Probabilistic interpretation of the activity of the output nodes 

Having computed the activities of the output nodes is not the end of the story. If we want to 
use neural networks to model linguistic behavior, we will have to provide a behavioral 
interpretation of the result in Fig. 4. After all, there is no third level of representation that the 
activities on nodes 5 through 8 could feed into (in this toy example). The only behavior one 
can then think of is that the virtual speaker chooses one of the four surface forms to actually 
produce. The question is: which SF will the virtual speaker choose? 
 One possible answer is that the speaker chooses the node that has the highest activity, i.e. 
the node / ampa/ . This is an option often found in neural network modelling, especially in 
competitive learning (Grossberg 1976, Rumelhart and Zipser 1985). Here, however, this 
option would throw away the / anpa/  candidate entirely, and such nonstochastic behavior is 
not desirable if we want to model the 70–30 variation of our toy language. 
 Another possible answer is that the speaker somehow produces both / ampa/  and / anpa/ . 
Such a mix might be imaginable at a continuous level of representation such as ArtF, where 
we can imagine what mixed gestures would look like, but the notion of mixed phonological 
representations at SF is difficult to envision (but see §5.xx). 
 The third possible answer is that the activities denote probabilities: / ampa/ , with an 
activity of 0.70, is chosen with a probability of 70%, and the only other competing candidate 
/ anpa/ , which has an activity of 0.30, is chosen with a probability of 30%. This means that if 
we ask the network to produce an SF from the input |an#pa| 1000 times, the network will say 
“/ ampa/ ” approximately 700 times, and “/ anpa/ ” approximately 300 times. In general, then, 
the probability of an output candidate is its activity, scaled by the sum of all output activities: 

 Pj =
aj

ak
k=5

8

!
(for j = 5..8)  (5) 

Thus, since the candidate / ampa/  has an activity of 0.70 and the other candidates have 
activities of 0.30, 0, and 0, the probability of / ampa/  can be computed under the linear-
activity-to-probability assumption of (5) as 0.70/ (0.30+0.70+0+0) = 70%. 
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 Such an interpretation of an activity as a relative probability has a biological correlate. If 
activity can be regarded as firing frequency, and / ampa/ ’s activity is 0.70 while / anpa/ ’s 
activity is 0.30, then node / ampa/  fires 2.333 times as often as node / anpa/  in any given 
period of time. This means that if, from a certain moment in time on, one waits until either 
node / ampa/  or node / anpa/  fires, the odds will be 7 to 3 that node / ampa/  fires earlier than 
node / anpa/ . In other words, there will be a probability of 70% that node / ampa/  fires first, 
and a probability of 30% that node / anpa/  fires first. If the first node to fire determines the 
speaker’s behavior, the relative activities have apparently determined the relative probabilities 
of the behavior. 
 Different interpretations of the relation between activity and probability are nevertheless 
possible. In the Boltzmann machine (Ackley, Hinton and Sejnowski 1985), the probabilities 
are 

 Pj =
eaj T

eak T

k=5

8

∑
(for j = 5..8)  (6) 

where T is called the temperature. The simpler linear relation of (5), however, will suffice for 
the present paper [xx not true for §6!]. 

2.6. Bidirectionality violated? 

The network of Fig. 3 works correctly in the production direction, i.e. with UF as the input 
and SF as the output. In the spirit of the BiPhon model we would like it to work equally well 
in the comprehension direction, i.e. with SF as the input and UF as the output. To model the 
recognition of an incoming / ampa/  as an underlying sequence of words, we can start by 
clamping the four SF nodes by keeping the / ampa/  node at a constant activity of 1.00 and the 
other three nodes constantly at zero. According to Fig. 3 and the procedure of (1) and (2), the 
underlying form |an#pa| will get an activity of 0.70 and the underlying form |am#pa| will get 
an activity of 1.00. Apparently, the network prefers |am#pa| over |an#pa| when it listens. 
 This situation is fine if the underlying forms |an#pa| and |am#pa| occur equally often in 
the language environment: the network’s preference then mimics the likelihood with which 
each of the two underlying forms was intended, given the surface form / ampa/ . If, however, 
coronals occur in word-final position three times more often than labials do (which is 
approximately true for Dutch and English), the underlying form |an#pa| is three times more 
likely a priori than |am#pa| is. According to Bayes (refxx), this should shift the preference of 
a listener towards |an#pa|, but in the network of Fig. 3 this is not taken into account. In fact, 
the weights are conditional probabilities on UF only, not on SF. 
 This asymmetry between comprehension and production is a general property of 
symmetric connections. It cannot be completely solved, but it can be made equally 
(un)problematic for both directions of processing, as we do in section 4. 
 
Section 2 has shown that an artificial neural network can replicate the decision mechanism of 
(Stochastic) OT or (Noisy) HG; in other words, the network mimics the decision mechanism 
of a probabilistic grammar. It is unsatisfying, though, that each full utterance is represented as 
a single node. In a more realistic network, the representation of each phonological element 
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will be distributed over multiple nodes. Such a network is discussed in §5. Understanding 
such a network, however, requires understanding how the activities of equation (1) come 
about in processing (§3), and how the weights in Fig. 3 come about in learning (§4). 

3. Activity spreading 

In the example of §2, the initially unknown activities of the unclamped (output) nodes could 
be computed directly by equations (1) and (2) from the given activities of the clamped (input) 
nodes. Such a direct computation is possible for simple two-level mappings as in that 
example, but with larger networks, in which information flows bottom-up, top-down and 
within levels simultaneously, a direct computation is no longer possible, because the activities 
of some unclamped nodes come to depend on the activities of other unclamped nodes that 
themselves are not known from the start. 
 The general solution is to compute the activity in the unclamped nodes iteratively, i.e. in 
small steps, from the given activities of the clamped nodes, and let the network gradually 
approach its equilibrium, i.e. a final state in which its activities stop changing. Such gradual 
activity spreading bears similarities with how activity spreads through biological neural 
networks, and proceeds as follows. After applying some known activities to the clamped 
nodes, we let the excitations (and activities) of the unclamped nodes start at zero, and we then 
update these excitations in small steps several hundreds of times. In the example of §2, the 
excitation in the output nodes 5 through 8 starts at zero, and is incremented at every time step 
(say, every millisecond) with an amount ! ej  given by 

 ! ej = 0.01" wijai # ej
i=1

4

$
%

&
''

(

)
** (for j = 5..8)  (7) 

where the factor of 0.01 is the spreading rate. 
 To see that (7) indeed produces the end result of equation (1) after some time, consider 
the situation for the output node / ampa/  at time 0. We already know that ! i=1

4 wi7ai  = 0.70, 
so at time zero, when e7 = 0 , ! e7  will be 0.01!(0.70 − 0) = 0.007. Therefore, e7  becomes 0 
(its previous value) plus 0.007 (the increment), which makes 0.007. At the next time step, 
! i=1

4 wi7ai  is still 0.70, but e7  is 0.007, so that the increment ! e7  is 0.01!(0.70 − 0.007) = 
0.00693, just 1% smaller than the previous increment. As a result, the new value of e7  
becomes 0.007 + 0.00693 = 0.01393. Figure 5 shows what happens if this procedure is 
repeated 500 times (i.e. for, say, half a second): while the increment decreases exponentially 
by a factor of 0.99 at each time step, the excitation (and therefore the activity) of output node 
7 grows asymptotically towards 0.70. 



 13 

 

Fig. 5. The time path of the excitation (and activity) of node / ampa/ . 
Bottom curve: starting from 0. Top curve: starting from 1.00. 

 One can predict the end result directly from (7), by realizing that in the equilibrium 
situation ! e7  goes to zero. Equation (7) tells us that in that case Σi=1

4 wi7ai −e7  must go to 
zero as well. This means that e7  goes to ! i=1

4 wi7ai , i.e. to 0.70, so the activity, by (2), also 
goes to 0.70, which is the activity in Fig. 4. This also shows that the starting value of the 
excitation does not matter: the excitation will go to 0.70 no matter where it started; as an 
illustration, Figure 5 also shows how the excitation develops if it starts at 1.00. This kind of 
reasoning from zero increments is a general trick to predict what the final situation will look 
like, given a formula for increments. 
 The evolution of the activities towards a constant final state, as in Fig. 5, is general for 
symmetric networks (refxx). After enough time, each node j reaches a stable equilibrium state 
where its excitation stops changing, i.e. where ! ej  approaches zero. As a result, the whole 
network reaches equilibrium, i.e. the excitations of all its nodes stop changing. Symmetric 
networks, where wij  equals wji , are guaranteed to move towards such a stable final state. 
 The general formula for the activity spreading toward an unclamped node j from its 
(clamped or unclamped) neighbors i is 

 Δej =ηa wij − shunting ej( )ai −excitationLeak ej
connected nodes i

∑
$

%
&&

'

(
))  (8) 

Here, 

!  

" a is the spreading rate, which in our simulations is kept constant at a value of 0.01. 
The excitation leak factor was set to 1 in (7), but could be set to higher values if we want to 
reduce the ultimate activity values. The shunting factor (Grossberg 1976) is included here 
only for completeness; it is set to 0 in all simulations in this paper. 

4. Learning in a linguistic network 

The representations and processes discussed in §2–3 are transient things: they come and go 
every few seconds as the listener receives more speech or the speaker produces more speech. 
The connection weights contain more persistent information, namely the aspects of 
knowledge seen in Fig. 1. These weights can learn from experience: they change only slowly 
over the months and years as the child is acquiring her language. In this section we explain 
how this can happen in our artificial networks. 
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4.1. Learning the toy language from UF–SF pairs 

Suppose we have the toy language of §2.1, with the coronal bias of §2.6: the UF |an#pa| 
occurs 37.5% of the time, of which the SF will be / ampa/  70% of the time and / anpa/  30% of 
the time; the UF |an#ta| occurs 37.5% of the time, yielding the SF / anta/  100% of the time; 
the UF |am#pa| occurs 12.5% of the time, yielding the SF / ampa/  100% of the time; and the 
UF |am#ta| occurs 12.5% of the time, yielding the SF / amta/  95% of the time and / anta/  5% 
of the time. The task for the virtual learner is start with the network of Fig. 3, but with all 
weights set to 0 (or a small random number), and then to adapt these weights under 
supervision from the language data. 
 For this purpose we feed the network with a large number, say 100,000, of UF–SF pairs 
randomly drawn from the language environment. Thus we feed the learner with the pair 
|an#ta|–/ anta/  in 37.5% of these 100,000 cases, and with |an#pa|–/ ampa/  26.25% of the time 
(70% of 37.5% is 26.25%); also with |am#pa|–/ ampa/  12.5% of the time, with |am#ta|–
/ amta/  11.875% (95% of 12.5%) of the time, with |an#pa|–/ anpa/  11.25% (30% of 37.5%) 
of the time, and with |am#ta|–/ anta/  the remaining 0.625% (5% of 12.5%) of the time. In Fig. 
3 we see that the five most common pairs are represented in the working network with the 
five strongest weights (though not in exactly the same order). The intuition, then, is that the 
learning algorithm should make those weights strong that connect nodes that are associated 
with each other in the data. 
 Now, what does it mean to “feed” UF–SF data to the network? It means that if at a 
certain point during learning we want to feed the network with, say, the pair |an#pa|–/ ampa/ , 
we set the activity of nodes 1 (|an#pa|) and 7 (/ ampa/ ) to 1.00 and the activities of the other 
six nodes to 0. This is the situation in Fig. 6. We then let activity settle down by having the 
activity spread 500 times (this does nothing in this case, because all eight nodes are clamped). 
After this, we change all 16 connection weights by a small amount. This whole procedure of 
selecting an UF–SF pair, setting the activities, vacuously spreading the activities, and 
changing the weights, is repeated 100,000 times, as said. In §4.2 through §4.7 we discuss six 
ways to do the weight changes. 

 

Fig. 6. Supervised two-level learning: all nodes are clamped, and only one node is on in UF as well as SF. 
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4.2. Unbounded linear learning 

The simplest way to react to the shared activity of nodes 1 and 7 is to raise the weight of their 
connection ( w1,7 ) by a small amount, say 0.01, and not change the weight of any of the other 
15 connections. This can be achieved by the following formula: 

 ! wij =! waiaj (for i =1..4, j = 5..8)  (9) 

where ! w  is the learning rate, which is 0.01 here. This works correctly, because for i = 1 and 
j = 7, aiaj  equals 1 (because both a1  and a7  are 1.00), whereas for all 15 remaining i–j 
combinations either ai  is 0, or aj  is 0, or both ai  and aj  are 0. So w1,7  is indeed the only 
weight that changes. 
 If this goes on for 1000 times, w1,7  will change approximately 250 to 275 times, because 
the network will be fed the |an#pa|–/ ampa/  pair 26.25% of the time. A simulation with 2000 
randomly drawn pairs is shown in Fig. 7. 

 

Fig. 7. The development of a weight in pure Hebbian learning: linear and without bounds. 

 We see that wij  increases linearly with time, and goes on to do so without bounds. It has 
been known from the beginning of neural network modeling that this “pure Hebbian learning” 
exhibits this pathological behavior (refxx). This is named after Hebb (1949), who proposed 
that a synaptic strength increases when two neurons fire together, though he did not propose 
formula (9). Various devices have been proposed in the literature to keep wij  within bounds. 

4.3. Clipped linear learning 

A brute-force method (refxx) to keep wij  within bounds is to clip wij  from below by a value 
wmin  (e.g. 0) and from above by a value wmax  (e.g. 1). This method is known to have the 
tendency of ultimately pushing most weights towards either wmin  or wmax . If the input is 
such that a single node i is on (and all other input nodes are off), and there are 10 output 
candidates (= nodes), then e.g. 3 output candidates will be maximally activated (namely those 
for which wij  equals 1) and 7 candidates will be off (namely those for which wij  equals 0). 
This means that under any scenario from §2.5 three output candidates have a probability of 
1/ 3 to win, and the remaining seven output candidates have a probability of 0 to win. This 
situation is not good for stochastic decision-making, where we want probabilities to move 
gradually from 0 to 1 or the reverse. In our simulations in §5 and §6 we therefore work with 
activities that are not clipped from above [xx but they are clipped from below, so we get some 
zero probabilities]. 
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4.4. Leaky learning 

A more gradual way to keep wij  within bounds is to introduce leak (refxx): 

 ! wij =! w aiaj " wij( ) (for i =1..4, j = 5..8)  (10) 

The weights now start to rise exactly as in Fig. 6, but after some time they start to rise more 
slowly, growing exponentially towards an equilibrium in very much the same way as in 
Fig. 5, albeit with never-ending fluctuations because of the stochasticity of the input. After 
many pieces of data (UF–SF pairs), the weights come to hover around those in Fig. 8. 

 

Fig. 8. The average end state of leaky learning in the language environment of §4.1. 

 Each weight in Fig. 8 is exactly the probability of the relevant UF–SF pair as mentioned 
in §4.1; the sum of all the weights in the figure is 1. We could have predicted this result from 
equation (10) by realizing that in the equilibrium situation the expected weight change ! wij  
must be 0 for each connection; in other words: for each i and j the average of Δwij  over all 
possible UF–SF pairs that could come in next, weighted by the probabilities of these pairs 
according to §4.1, must be zero. Equation (10) then tells us that the expectation value 
aiaj ! wij  will then move towards zero, so that the weight wij  will ultimately go toward the 

correlation between ai  and aj : 

 wij ! aiaj  (11) 

Thus, wij  can be predicted if we know the statistics of the activity pattern. For instance, 
26.25% of the time node 1 is on ( a1 =1) and node 5 is off ( a5 = 0 ), 11.25% of the time nodes 
1 and 5 are both on ( a1 = a5 =1), 62.5 percent of the time nodes 1 and 5 are both off (
a1 = a5 = 0 ), and 0% of the time node 1 is off ( a1 = 0 ) and node 5 is on ( a5 =1); the weight 
of the connection between nodes 1 and 5 will therefore go to aiaj  = 0.2625!1!0 + 
0.1125!1!1 + 0.625!0!0 + 0!0!1 = 0.1125. Since three of the four terms are zero if node 1 and 
node 5 are not both on, this expectation value necessarily equals the probability that both node 
1 and node 5 are on simultaneously. This is a general result if all activities can take on only 
the values 0 and 1: 
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 wij ! P ai =1" aj =1( )  (12) 

 Such pure correlation learning looks nicely simple, but has a disadvantage. Relatively 
rare inputs will lead to weak connections: |am#pa| has a three times weaker connection in 
Fig. 8 than the three times more common input |an#ta|. This disregards the perfect degree to 
which the SF / ampa/  can be predicted from |am#pa|. The frequency difference between 
|am#pa| and |an#ta| thus leads to large difference in the activities at SF, which means that 
further on in processing the rare UF counts less much less heavily than the more frequent UF. 
A learning rule that focuses on reliability rather than frequency alone may fare better in this 
respect. Another problem is that the small output activities for rare inputs (such as 0.125 for 
/ ampa/ ) do not reflect the full activity that occurred during learning (which was 1 for 
/ ampa/ ). 

4.5. Outstar learning 

The cause of the problems with leaky learning is that that algorithm leaks too much: 
connections get weaker even if their two nodes are both inactive. One way to remedy the 
problem is to use the outstar learning rule (Grossberg 1969): 

 ! wij =! w aiaj " aiwij( ) (for i =1..4, j = 5..8)  (13) 

This learning rule does nothing with a connection if its input node is off ( ai = 0 ). A property 
that none of the learning algorithms discussed above share, is that for outstar learning we have 
to assign a direction to the process, for instance to define UF as the input level and SF as the 
output level; so we choose the production view here, as in section 2. 
 For the example in Fig. 6, outstar learning will strengthen the connection between nodes 
1 and 7, weaken the connections 1–5, 1–6 and 1–8, and leave the remaining 12 connections 
alone. After many learning steps with UF–SF pairs from our toy language, the weights come 
to hover around the equilibrium values in Fig. 9. 

 

Fig. 9. The average end state of outstar learning in the language environment of §4.1. 

The weights turn out to have become the conditional probabilities of SF given UF, so outstar 
learning exhibits the probability-matching behavior that we wanted; the sum of the weights 
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going out from each UF node is 1. This could have been predicted by realizing that in the 
equilibrium situation 0 = aiaj ! aiwij = aiaj ! ai wij , so the weights must go to 

 wij !
aia j
ai

 (14) 

For cases where all activities during learning can only be 0 and 1, equation (14) reduces to the 
conditional probability that output node j is on given that input node i is on: 

 wij !
P ai =1" aj =1( )

P ai =1( )
= P aj =1 ai =1( )  (15) 

 Outstar learning has several advantages. As the weights in outstar learning come to 
reflect conditional probabilities, the weights naturally stay within the limits of 0 and 1. 
Furthermore, outstar learning fares better than correlation learning with respect to reliability, 
mimicking the GLA for Stochastic OT: the connections from |am#pa| and |an#ta| are now 
equally strong, reflecting the fact that their SF outputs can be equally reliably predicted from 
the UF. Also, the activities at SF will now be 1 for these two inputs, just as during learning. 
What is lost now is all dependency of SF activity on the frequency of the input, for which 
there is evidence in the literature (refxx); a way to have both reliability and frequency 
influences is to have a combination of (10) and (13). There is a problem with both (10) and 
(13), though: some nodes at SF, such as / anpa/ , are very specific for certain UF forms, and 
this is not rewarded with a strong connection; in other words, (15) does not take into account 
whether or not output node j is on if input node i is off. One can look at this in terms of the 
reliability of the reverse process, i.e. the mapping from SF to UF in word recognition: the 
connection in Fig. 9 from the SF / anpa/  to the UF |an#pa| is only 0.300, although the UF can 
be predicted with 100% reliability from the SF. 
 Outstar learning is close to the delta rule of supervised learning algorithms (refxx), where 
the weight update is proportionate to the error that the network would make when allowed to 
run freely (i.e. with UF clamped but SF unclamped); the error is the difference between the 
desired activity at SF (i.e. the number of 0 or 1, as used as aj  in the SF clamping above) and 
the activity that the SF node j would get when only the input UF nodes are clamped, which is 
Σaiwij  in the examples of §2: 

 ! wij =! w aiaj " ai akwkj
k=1

4

#
$

%
&&

'

(
)) (for i =1..4, j = 5..8)  (16) 

This, together with the property of probabilities conditional to the input, makes this algorithm 
a good candidate for replicating results previously found with Stochastic OT. This algorithm  
is therefore expected to be of use when in §6 we model auditory dispersion, a phenomenon 
previously modeled successfully with Stochastic OT (Boersma and Hamann, 2008). 
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4.6. Instar learning 

To take the specificity of SF into account, we can apply the instar learning rule (Grossberg 
1969, 1976; Rumelhart & Zipser 1985), which is the outstar learning rule in the opposite 
direction of processing: 

 ! wij =! w aiaj " ajwij( ) (for i =1..4, j = 5..8)  (17) 

This learning rule does nothing with a connection if its output node is off ( aj = 0 ). As with 
outstar, we explicitly have to define what the input and what the output level are (again, we 
take the production view, with UF as input and SF as output). For the example in Fig. 6, instar 
learning will strengthen the connection between nodes 1 and 7, weaken the connections 2–7, 
3–7 and 4–7, and leave the 12 remaining connections alone. For our toy language, the weights 
come to hover around the values in Fig. 10. 

 

Fig. 10. The average end state of instar learning in the language environment of §4.1. 

The weights turn out to become the conditional probabilities of UF given SF; the sum of the 
weights coming in at each SF node is 1. In the equilibrium situation 

 wij →
aia j
a j

 (18) 

For cases where all activities during learning can only be 0 and 1, equation (18) reduces to the 
conditional probability that input node i is on given that output node j is on: 

 wij !
P ai =1" aj =1( )

P aj =1( )
= P ai =1 aj =1( )  (19) 

 The two problems with rare inputs are not addressed, but the specificity problem is 
solved: the connection from the SF / anpa/  to its only possible UF |an#pa| has a weight of 1. 
The effect of the different frequencies of the different underlying forms has also returned, 
with the connection from / ampa/  to |an#pa| now being stronger than the connection from 
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/ ampa/  to |am#pa|, as in leaky learning but not as in outstar learning. The drawback is that 
the infrequent UF |am#pa| will now produce a much smaller activity pattern in SF (a total of 
0.323) than the more frequent UF |an#pa| (a total of 1.677). 
 Instar learning is known from work on competitive learning (Grossberg 1976, Rumelhart 
& Zipser 1985). This algorithm is therefore expected to be of use when in §5 we model 
phonological category creation, a phenomenon that has been partially modeled before with 
competitive learning (Guenther and Gjaja 1996). 

4.7. Inoutstar learning 

To model category creation we seem to need unsupervised instar learning, and to model 
auditory dispersion we seem to need supervised outstar learning. However, both processes 
occur in the AudF–SF interface, so the same network will have to model them both. Our goal, 
therefore, is to model both category creation and auditory dispersion with a single learning 
algorithm, perhaps a compromise between instar and outstar. We call this the “inoutstar” 
learning rule: 

 ! wij =! w aia j "
ai +aj

2
wij

#

$
%

&

'
( (for i =1..4, j = 5..8)  (20) 

This learning rule does nothing with a connection if both of its nodes are off. For the example 
in Fig. 6, inoutstar learning will strengthen the connection between nodes 1 and 7, weaken the 
connections where one node is on and the other off (1–5, 1–6, 1–8, 2–7, 3–7 and 4–7), and 
leave the remaining nine connections alone. For our toy language, the weights come to hover 
around the values in Fig. 11. 

 

Fig. 11. The average end state of inoutstar learning in the language environment of §4.1. 

Each weight turns out to become the harmonic mean of the weights of Figs. 9 and 10. In the 
equilibrium situation 
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2 aiaj

ai +aj
 (21) 
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For cases where all activities during learning can only be 0 and 1, equation (21) reduces to the 
harmonic mean of the two conditional probabilities: 

 wij !
2 P ai =1" aj =1( )

P ai =1( ) +P aj =1( )
=

2 P ai =1 aj =1( ) P aj =1 ai =1( )
P ai =1 aj =1( )+P aj =1 ai =1( )

 (22) 

 Inoutstar learning combines the desirable properties of instar and outstar: it tackles all 
problems mentioned to some extent, though none of them perfectly: it does some probability 
matching, it has some specificity, and it is even a bit frequency-dependent in both directions 
(because instar and outstar are both frequency-dependent in one direction). It has the 
additional advantage over instar and outstar learning that it is symmetric in input and output: 
the formula stays the same if i and j are swapped, i.e. the inoutstar learning rule does not care 
about the direction of processing. This will even be true if there are separate weights in the 
beginning, i.e. if wij  is not equal to wji  in the beginning of learning: equation (22) shows that 
inoutstar learning causes the weights to become symmetric. 

4.8. Conclusion 

A general formula for the change in the weight between input node i with activity ai  and 
output node j with activity aj  could be 

 ! wij =! w aiaj " instar ajwij " outstar aiwij " weightLeak wij( )  (23) 

We investigated pure Hebbian learning (instar = 0, outstar = 0, weightLeak = 0), leaky 
learning (instar = 0, outstar = 0, weightLeak = 1), instar learning (instar = 1, outstar = 0, 
weightLeak = 0), outstar learning (instar = 0, outstar = 1, weightLeak = 0), and inoutstar 
learning (instar = 0.5, outstar = 0.5, weightLeak = 0). Of these, inoutstar learning combines to 
some extent some of the good properties of the other learning algorithms, such as symmetry 
(insensitivity to the direction of processing), probability matching in both directions of 
processing, specificity in both directions of processing, and sensitivity to the frequency of the 
input in both directions. In §5 and §6 we investigate the suitability of this algorithm for two 
hitherto separately modeled phenomena, namely category creation and auditory dispersion. 

5. Phonological category creation 

In this section we present a neural network that can model the emergence of simple 
phonological categories in the language-acquiring child. In terms of Figs. 1 and 2, 
phonological categories, such as feature values, are present in the adult phonological Surface 
Form (SF). In the comprehension direction of Fig. 2, the cue knowledge at the adult 
phonology-phonetics interface classifies the thousands of different sounds that can occur in 
the Auditory Form (AudF) into a small number of discrete categories at SF. In terms of neural 
networks, a “category” can only be defined as a stable, or “attractive”, activity pattern. That 
is, an adult network at the phonetics-phonology interface should “filter” the thousands of 
possible activity patterns at AudF into only a small number of possible activity patterns at SF. 
 In existing models of phonology category learning (Guenther and Gjaja 1996; Boersma, 
Escudero and Hayes 2003) the adult state of the grammar or network comes about by training 
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the grammar or network with a large number of auditory values at AudF, without telling the 
grammar or network what the intended category was. Such “unsupervised” learning is also 
employed here. In §5.3 we describe how this learning proceeds, after having described the 
network structure in §5.1 and the AudF input in §5.2. The resulting adult network is presented 
in §5.4, after which we investigate its behavior in perception (§5.5) and production (§5.6). In-
depth investigations of the underlying mechanism (§5.7) and its variability (§5.8) follow. 
Finally we compare the network’s behavior (§5.9) and assumptions (§5.10) to the existing 
literature. 

5.1. A network for category emergence 

Figure 12 shows the structure of the network that should learn the task of categorizing 
auditory input. The network contains only two levels of representation: the phonetic Auditory 
Form, which is the input for the listening learner, and the phonological Surface Form, which 
is the listener’s perceptual output. 

 

Fig. 12. The initial state of a network for category creation, with continuous sound coming in at clamped AudF 
and discrete behavior emerging at unclamped SF. 

 The Auditory Form represents an auditory continuum, such as the frequency spectrum 
along the basilar membrane. While the basilar membrane has 3,500 inner hair cells, each of 
which is connected to a fiber in the auditory nerve, we represent the spectrum here with only 
30 nodes for reasons of visualizability (and computation time). Figure 12 arranges the nodes 
in a natural order, with the leftmost node (node 1) representing the lowest audible frequency 
of the continuum, and the rightmost node (node 30) representing the highest audible 
frequency. As a simplification we allow the incoming sound to activate only one small region 
of AudF (as e.g. in Fig. 14); this means that AudF can only represent a unitary spectral 
continuum, and for this we choose the first formant (F1). 
 The Surface Form in Fig. 12 will come to represent phonological vowel height, because 
that is the feature that has F1 as its main auditory correlate. Every category that the SF in Fig. 
12 has to be able to represent, is therefore a value of the feature vowel height. We know of no 
languages with fewer than two or more than six vowel height values, so our SF should be able 
to represent between two and six categories. Even if we restrict the activity patterns at SF in 
such a way that each node is either “on” (1) and off (0), the SF in Fig. 12 can represent as 
many as 210 = 1024 different categories; and if “on” nodes cannot be shared between 
categories, the SF in Fig. 12 can represent 10 different categories. In either case, our 10 nodes 
should be more than enough to represent any number of feature values between two and six. 
 As can be seen in Fig. 12, AudF and SF are fully connected to each other: there are 300 
connections between them, one for each pair of AudF node and SF node. Initially, these 
weights are small and random: uniformly distributed between 0 and 0.1, as shown as black 
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lines in the figure. This randomness is meant to ensure that in its initial state the network is 
poor at classifying incoming sounds into stable categories: in perception (with a clamped 
AudF and an unclamped SF, as in Fig. 12), any local activity peak in AudF will just lead to a 
small and random pattern at SF (as can be seen for example in Fig. 14). As illustrated in §5.4, 
this situation will change when the network learns from incoming sounds at AudF: the 
weights will become larger and less random. As §5.5 shows, the result is the desired 
emergence of categorical behavior in the network. 
 Finally, Fig. 12 shows 45 connections within SF: one for each pair of SF nodes. These 
connections have negative weights of -0.1 (shown in light gray) in order to make sure that the 
SF nodes inhibit each other’s activities. As a result, learning causes the SF nodes to become 
connected to different AudF patterns, which is illustrated in §5.4 and explained in §5.7. This 
ensures that different categories from the network’s language environment lead to different 
categorical patterns in the learner’s own SF. This mutual inhibition is a mechanism we 
borrow from competitive learning models (Grossberg 1976, Rumelhart and Zipser 1985). The 
negative weights do not change during learning. 

5.2. An input distribution for vowel height 

As said, the network will be trained with the auditory distribution alone, i.e., it will have to 
learn from incoming F1 values from a language environment, without supervision. Thus, the 
virtual learner repeatedly hears an incoming sound but is never told to what category it 
belongs and is never told any of the associated higher levels of representation, such as 
meaning. 
 For the coming sections of this paper, we investigate a very simple language environment 
that consists of three vowels, namely / i/ , / e/  and / a/ , as in [xx Titia knows such a language!]. 
The F1 of each of vowel is distributed according to a Gaussian distribution, as in the three 
dotted curves in Fig. 13. The distance between the peaks is one third of the range of the 
continuum, i.e. 9.667 nodes, and the standard deviation of each peak is one third of that (i.e. 
3.222 nodes). The three vowels are equally frequent in the language environment, so that the 
total distribution of F1 values is the solid curve in Fig. 13. 

 

Fig. 13. An F1 distribution in a language with three vowel heights. 

 The beginning learner does not yet know that there are three curves; she only hears input 
tokens one by one without category label, and the summed distribution of these input tokens 
gradually and incrementally grows towards the total F1 distribution. The valleys in this curve 
are rather shallow, namely approximately 65% of the height of the peaks. In the end, it is on 
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the basis of input drawn from the summed distribution, with its shallow valleys, that the 
learner will have to figure out that there are three categories. 

5.3. Unsupervised learning from the distribution 

A full description of a language learning procedure involves describing how each input is 
applied to the learner, how the learner processes this input, and how the learner then changes 
her grammar. In our case, the input to the network is formed by the learner’s language 
environment repeatedly producing a single F1 value randomly drawn from the summed 
distribution (equivalently, the language environment randomly selects one of the three 
vowels, then randomly draws an F1 value from that vowel’s Gaussian distribution; the 
important restriction is that the learner is not told which vowel was selected). The learner 
receives this F1 value as an activity at AudF, then processes it by spreading this activity to 
SF, and finally updates the connection weights between AudF and SF on the basis of the 
activities at AudF and SF. We will show here that after 20,000 or so incoming F1 values, this 
procedure leads to the emergence of categorical behavior at SF. 
 Whenever an F1 value is applied to AudF, this produces an activity pattern at AudF of 
the form shown in Fig. 14. The F1 value is an (unrounded) node number between 1.0 and 
30.0. In Fig. 14, the F1 value is 12.3. The nodes in the vicinity of location 12.3 are then 
activated according to a Gaussian shape with a height of 1 and a standard deviation of 4 
percent of the extent of the continuum (i.e. 0.04 x 29 = 1.16 nodes), mirroring the width of a 
region of activity on the basilar membrane. This activates node 12 the strongest (at a distance 
of 0.3), node 13 a bit less strongly (distance 0.7), node 11 (distance 1.3) even less strongly, 
and so on; the activities of nodes further away than nodes 14 and 10 are too weak to be visible 
in the figure. Independently of whether the center of the Gaussian bump is located on a node 
or somewhere between two nodes, the total activity in AudF is always around 2.908 (if the F1 
value is very close to the left or right edge, the total activity is less, because a part of the bump 
is cut off). 

 

Fig. 14. Applying an input. 

 After the input is applied to AudF, the AudF nodes in Fig. 14 are clamped (as shown by 
the solid edges of their circles), i.e. their activities are kept at the applied values (those seen in 
the figure) throughout the spreading of activities. The SF nodes, by contrast, are unclamped 
(as shown by their dotted circumferences), i.e. their activities adapt to the activities of the 
AudF nodes as well as to the activities of other SF nodes throughout the spreading of 
activities. The activities at SF start at zero, after which the activities of AudF excite the nodes 
at SF according to equation (8); as SF activity grows, the SF nodes start to inhibit each other, 
again according to equation (8). These excitations and inhibitions occur with a spreading rate 
of 0.01, an excitation leak of 1, and a shunting factor of 0. Basically, this is equation (7), 
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except that the summation is over all AudF and SF nodes and the equation applies to all SF 
nodes. The computation of activity from excitation follows equation (2), except that the 
activities are clipped from below at zero (i.e., negative activities are not allowed, but large 
positive activities are). Spreading goes on in this way for 100 time steps. The result is that 
ultimately the whole network would move towards equilibrium, if the spreading were not 
truncated after 100 time steps. 
 After activity spreading, the network is allowed to learn by the inoutstar rule, i.e. 
equation (20) applied to all 300 connections between AudF and SF, with a learning rate of 
0.01. There is only one learning step per incoming F1 value. 

5.4. Result after learning: the perception of three categories has emerged 

After 20,000 incoming F1 values, the weights of the network have become those in Fig. 15. 

 

Fig. 15. A network that has been trained on three peaks and has thereby become capable of categorizing. 

At SF, nodes 2, 6 and 9 (i.e. the three that are on in the figure) have become associated to low 
([i]-like) F1 values, nodes 4, 5 and 8 to intermediate ([e]-like) F1 values, and nodes 1, 3, 7 
and 10 to high ([a]-like) F1 values. In other words, each node at SF has specialized in one of 
three areas of AudF, and each of these three areas of AudF is associated with approximately 
one third (i.e. three or four) of the SF nodes. 
 This situation of dedication of SF nodes to AudF areas causes the network to behave 
categorically in perception. We can see this by applying a large number of different input 
patterns to AudF and examining the resulting output patterns at SF. In Fig. 16 we pace a local 
activity pattern through the whole auditory continuum from the lowest values (top-left 
picture) to the highest values (bottom-right picture). We see that the output at SF favors 
exactly three patterns of activity. For any low auditory value, only SF nodes 2, 6 and 9 switch 
on; for any mid value, only nodes 4, 5 and 8 switch on, and for any high value, only nodes 1, 
3, 7 and 10 switch on. Since activity patterns are the brain’s way of representing behavior, the 
favored 2–6–9, 4–5–8 and 1–3–6–10 patterns at SF represent favored (or “attractive”, or 
“stable”) types of behavior at SF, or, in other words, three categories (when the information 
proceeds up towards the semantic areas of the brain, there will still be only three types of 
behavior in those higher regions). We can therefore call the first favored behavior at SF the 
“2–6–9 category”; it replicates the / i/  category of the language of the parents. Likewise, the 
4–5–8 category represents the parents’ / e/  and the 1–3–7–10 category represents the parents’ 
/ a/ . 
 A difference between the final network of Fig. 15 and the networks we discussed in 
sections 2 through 4, is that the network of Fig. 15 no longer represents a phonological 
category as a single node, but that it represents phonological categories in a distributed 
manner, namely as two or three SF nodes each. The same is true of AudF: every incoming 
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sound activates more than one node at AudF. A biologically desirable property that such a 
network displays is redundancy in the representation of patterns: if a couple of AudF nodes 
die, and one SF node dies, the network will still perform its classification task quite well. In 
Fig. 15, for example, every incoming sound will still generate one of three stable patterns at 
SF. For purposes of category creation, it is even more important that having 10 SF nodes 
allows any number of categories to be created: rather than forcing the existence of 10 
categories, as would be the case for the networks in sections 2 through 4, the 10 nodes are 
divided roughly equally among the two or three or five categories that the peaky language 
distribution suggests there are. 

 

Fig. 16. Pacing through the Auditory Form yields three types of patterns in the Surface Form. 
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 We conclude that there come to be three types of stable behavior at SF, to be interpreted 
as three phonological categories. This categoricality comes about gradually during learning. 
On the way to the final state of the network, the categoricality of the behavior increases from 
nothing (the random behavior at SF that the network of Fig. 14 exhibits) to almost perfect (the 
behavior of the eighth picture in Fig. 16, which has the same input). Thus, categoryhood is 
gradient in this model: during development, the patterns gradually grow from being less 
attractive to being more attractive, without there being a moment at which one can say that a 
category has just come into existence. During the aquisition period, the behavior therefore 
changes from random via slightly categorical towards very categorical. 

5.4a. How does category creation work? 

After seeing that category creation works, we like to understand why it works. 
 The most crucial aspect of the network is the competition at SF. This is known from 
competitive learning models (Grossberg 1976, Rumelhart and Zipser 1985, Guenther and 
Gjaja 1996), which typically implement competition by “manually” setting the most active 
output node (the “winner”) to an activity of 1 and all other nodes (the losers) to an activity of 
0. This winner-takes-all procedure is an extreme version of what we use in this paper, and 
could be implemented in our case as follows: if after 100 steps of activity spreading to SF (as 
in Fig. 14) we drastically severed all connections between the SF level and the AudF level, 
and thereby allowed activity to spread only between the nodes of SF, then the inhibitory 
connections within SF would reduce the activities of all nodes as long as more than one node 
were on; one by one, the weakest nodes would drop to zero activity, and this reduction would 
stop when only a single node were left, which would have some nonzero activity remaining; 
this node would be the one that had the highest activity to start with. Our exhaustive 
inhibitory connection scheme, which does not use winner-takes-all, can be seen as a gradual 
version of the original competitive learning models; it is a more “automatic” version of 
competition, because no artificial temporary connection severing is necessary; still, the 
competition is guaranteed by the existence of inhibitory connections within SF. 
 In the original competitive-learning models, the winner-takes-all step is followed by a 
learning step in which the weight(s) of the connection(s) between the active input node(s) and 
the winner are increased and the weights of the connections between the inactive input nodes 
and the winner are decreased, a procedure identical or similar to instar learning. Our gradual 
version of competitive learning with inoutstar learning creates distributed categories by the 
same cause, which we try to explain now. 
 First imagine that there is only one node at SF. In Fig. 14 this node will be active 
whenever a part of AudF is switched on. The connections from this node to AudF regions that 
are often on will strengthen more than the connections to AudF regions that are rarely on. 
After some time, the connection weights for the various AudF nodes will come to follow a 
pattern similar to the summed curve in Fig. 13. This means that if we pace through AudF as in 
Fig. 16, the activity of the single SF node will go up and down along with the peaks in the 
summed distribution. Hence, activity in the single SF node will be highest at the three tops of 
Fig. 13. Imagine now that there are 10 nodes at SF, but there is no inhibition between them. 
Every node at SF will come to be connected to AudF in the same way as the single SF node in 
the previous imaginary network. Consequently, each node will be activated by AudF 
according to the summed curve in Fig. 13. Imagine finally that an inhibition between all the 
nodes at SF is introduced. This inhibition militates against different SF nodes to be on at the 
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same time. As a result, different SF nodes will come to specialize in different regions of 
AudF, so that they can be on at different times (the sum of all activities at SF will still follow 
Fig. 13; see Fig. 17). 
 A further question is: why does an SF node specialize in a contiguous region of AudF, 
rather than, say, in the left half of the first peak and the right half of the second peak? This is 
because of the width of the activity on AudF: the left half of the first peak tends to be active 
when the right half of the first peak is somewhat active as well. In other words, (spectrally) 
adjacent nodes at AudF have correlated activities, just as (spatially) adjacent hair cells on the 
basilar membrane do. If in our simulations we had instead activated only the node nearest to 
the selected F1, no categorization of regions would have occurred. 
 The assignment of each SF node to an AudF region is not random: in fact, the SF nodes 
tend to become equally divided between the three categories. If each SF node were 
independently tuned to a region of its choice, we would find that in 5.2% of the experiments 
an ambient category would be presented by 0 nodes. We never find this; the division 4–3–3 is 
by far the most common. The cause of this equal division is the inhibition. 

5.5. Investigating the network’s detailed perceptual behavior 

In Fig. 16 we can see that when the incoming sound paces through the auditory continuum, 
the degree of the activities within a category at SF is not always the same. The activities of 
the 2–6–9 (/ i/ ) category are much higher if AudF node 6 is on (where the peak of the first 
category is located, as can be seen in Fig. 13) than if AudF nodes 2 or 10 (where the margins 
of the first peak are located) are on. Thus, the first category is much more strongly activated 
by the relatively common AudF patterns around node 6 than for the less frequent AudF 
patterns around nodes 2 and 10. 
 At the category boundaries, a mixed type of behavior appears. For AudF nodes around 10 
and 11, SF shows a combination of the 2–6–9 (/ i/ ) category and the 4–5–8 (/ e/ ) category: 
apparently, both categories are activated to some (small) extent. Observationally, this 
situation can correspond to an uncertainty in the listener about what the category is; an 
interpretation of this is that the SF candidates / i/  and / e/  both move on towards UF, 
activating in the lexicon words with underlying |i| as well as words with underlying |e|. Since 
AudF node 11 can indeed represent either of two categories from the language environment 
(speakers produce such auditory values sometimes when intending / i/ , sometimes when 
intending / e/ ), such uncertainty is adaptive and appropriate. Something similar happens for 
AudF nodes around 20 and 21: the listener’s reaction at SF is a mixture of the 4–5–8 (/ e/ ) and 
1–3–7–10 (/ a/ ) categories. 
 Figure 17 shows how strongly every possible location of the Gaussian input bump at 
AudF activates each of the three categories at SF (after 100 spreading steps, with a spreading 
rate of 0.01). Thus, a bump centered at AudF node 10 causes activities of approximately 0.37 
in nodes 2, 6, and 9, so that the summed activity for category 1 (= nodes 2–6–9) is 1.1, as 
shown in the Figure. Likewise, category 2 (= nodes 4–5–8) has a summed activity of 0.4 in its 
three nodes, and category 3 has no activity in any of its nodes 1–3–7–10. 
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Fig. 17. The degree of activation of each of the three categories, as a function of the auditory input. 

In Fig. 17 the activity was measured for 581 center locations, namely for AudF nodes 1 to 30 
in steps of 0.05 node.2 The peak is higher for category 3 than for the other two categories, 
because this category is formed by four SF nodes instead of three. 
 The activity curves follow the input distributions of Fig. 13 closely, with the tops at 
approximately the same locations. A difference with the distributions is that the activities go 
to zero at a distance of approximately 7 nodes from the tops. This is due to the inhibitory 
behavior of the negative connection weights within SF, which e.g. renders the excitation of 
category 1 negative for all AudF locations above 13. The zero values then follow from the 
clipping mentioned in §5.3. 
 If we interpret the activities of Fig. 17 as relative probabilities of perceiving a certain 
incoming AudF as any of the three categories, we can draw the identification curves of Fig. 
18. These curves tell us how likely any incoming AudF is perceived as category 1, 2 or 3. For 
each category, the curve is computed by dividing the activity curve for that category (Fig. 17) 
by the sum of the three activity curves. 

 

Fig. 18. Identification curves after distributional category learning. 

The shapes of the identification curves are similar to those found with human participants in 
the lab; for this reason, Fig. 18 labels the three categories with the language-specific phoneme 
labels that human participants would have to choose from (a difference with the human curves 
is that the curves in Fig. 18 go to their extreme values abruptly; this difference vanishes when 
we realize that sounds played in the lab are supplied with transmission noise before they are 
converted to AudF values in the listener; another difference is that the extremes in Fig. 18 are 
exactly 0 and 1, which is because we assumed a perfect reporting mechanism). 
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 In the lab, humans can report not only the category they think they hear, but also how 
good the sound heard is as a token of that category. Such goodness judgments can be thought 
of as following the curves in Fig. 17: if the listener has access to the total activity of a 
category, she will be able to report differences in category goodness for the various sounds 
that she classifies as the same category. Since the peaks of the curves in Fig. 17 are at or near 
the most frequent exemplars of the categories (Fig. 13), the best exemplars in a prototype task 
will be those same most frequent exemplars (this statement will be amended in §6.5). 

5.6. Investigating the network’s behavior: production 

The network is bidirectional, so it can be used to model not only perception, as in the previous 
section, but production as well. To measure the production of a category, we can clamp the 
SF nodes of that category (i.e. nodes 2–6–9 or 4–5–8 or 1–3–7–10) at an activity of 0.8 and 
compute what the activity at AudF will be after 100 spreading steps. The three results are in 
Fig. 19. 

 

Fig. 19. The activity at AudF, as a function of a three- or four-node input at SF. 

The learner produces the categories in much the same way as her parents, if the activities of 
Fig. 19 are interpreted as relative probabilities. As a result of the inhibition, the standard 
deviation is somewhat smaller than that of the parents, but this will be counteracted by the 
transmission noise that has to be added to the AudF values drawn from Fig. 19. 
 The result in Fig. 19 is not realistic. Considerations of articulatory effort will shy the 
learner’s production away from the edges. We can model this with the network in Fig. 20, in 
which the influence of the sensorimotor knowledge and the knowledge of articulatory effort is 
summarized as a single clamped ArtF node that has strong inhibitory connections to 
peripheral AudF nodes and weak inhibitory connections to central AudF nodes. If the 
inhibitions follows a parabola, with a weight of -0.1 in the center and -1.6 at the edges, the 
AudF output of the 2–5–8 category will be that shown in Fig. 20. 
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Fig. 20. Network for production. 

The AudF activity for all three categories is summarized in Fig. 21. 

 

Fig. 21. Production influenced by articulatory effort. 

The auditory realizations of the two outer categories now avoid the edges: when compared 
with Fig. 19, their peaks slightly moved inward, and their medial tails are much longer than 
their lateral tails. This means that the learner will on average produce rather more central 
AudF values than her parents. 
 If the sound shift of Fig. 21 goes on for a number of generations, the three peaks will 
come so closely together that a new learner cannot create three categories any longer. 
Inevitably, iterated learning with the procedure of section 5 must lead to merger. However, 
information from above SF will come to the rescue, as section 6 will show. 

5.7. Why and when does this work? 

 Now that the mechanism is more or less understood, we like to know the circumstances 
under which the category creation procedure succeeds or fails. The procedure works well for 
four categories with the same valley depth of 0.65 as in Fig. 13, i.e. with a standard deviation 
of 3/4 of that of the three peaks in Fig. 13. For five or more categories, no stable 
categorization takes place. For two categories with the same standard deviation as in Fig. 13 
(i.e. with a much deeper valley), the procedure succeeds. For two categories with a valley 
depth of 0.65 (i.e. a standard deviation 1.5 times that of the peaks in Fig. 13), the procedure 
typically creates three insecure categories, of which two overlap strongly; this can be 
remedied by setting the shunting factor to a value of 0.1 (which in §3 we promised not to 
need), or by increasing the width of the bump at AudF (which is unnatural, because this bump 
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should not depend on the number of categories). We conclude that category creation by 
distributional learning alone is rather brittle [xx net zo brittle als echte?]. 
 Category creation works with either the instar learning rule (assuming AudF is the input 
and SF is the output), as could be expected from earlier competitive learning studies, or the 
inoutstar rule. It does not work with the outstar learning rule. 

5.8. Plasticity 

After learning three categories in her native language environment, the learner might move to 
an area of the world where four categories are spoken. The network will adapt itself 
accordingly. If the middle category has four SF nodes, they will split up 2–2. If the middle 
category has three SF nodes, any of three things can happen: the nodes of the middle category 
split 2–1; the nodes split 2–1 but the second middle category borrows a node from its 
neighbor; or the category with four nodes splits 2–2. 
 If, conversely, a learner with four categories moves to a place with three, she will merge 
two categories, typically the two in the middle. 
 If all three nodes of the second category (4–9–10) die, the remaining seven nodes will 
divide each other up between the three categories. If the whole of the higher-frequency third 
of AudF dies, its three nodes will be recruited by the first and second categories. 
 We conclude that the network has a high degree of plasticity, adapting itself to changes in 
the environment as well as to changes in its own structure. 

5.9. Replicating experimental data: categorical perception 

It is known that listeners can discriminate easier two auditory forms that map to different 
phonological categories than two auditory forms that map to the same category (Liberman et 
al. 1957). The network of Fig. 15 can replicate this behavior, under the assumption that a 
listener’s report whether two sounds are the same or different rests on her inspecting her SF, 
not her AudF. That is, when responding to the task of reporting whether two sounds are the 
same or not, the listener is actually reporting how different she judges the two surface forms 
instead. 
 To replicate this with the network of Fig. 15, we first compute the average absolute 
difference between the activities of the SF nodes in the first two pictures in Fig. 16. Node 1 
(at SF) is activated equally (namely, 0) in both pictures, but node 2 is activated a bit more (by 
0.2) in picture 2 than in picture 1. On average, the activity of a node in picture 2 differs from 
the activity in a node in picture 1 by an amount of 0.03. The difference between picture 3 and 
picture 4 is even smaller, namely less than 0.01. The difference between picture 6 and picture 
7 is much larger, namely 0.05, because many nodes switch on or almost off when going from 
picture 6 to picture 7. Figure 22 displays all the 19 differences. It can be seen that the 
difference between the SF activities for adjacent AudF nodes around the category boundaries 
is much greater than the difference between the SF activities for adjacent AudF nodes around 
the category centers. This discrimination curve illustrates the categorical perception effect. 
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Fig. 22. The discrimination curve. The peaks at the edges represent the difference between nodes 1 and 20. 

5.10. Comparison with an earlier model of the perceptual magnet effect 

A potential early stage of categorical perception, the perceptual magnet effect (Kuhl 1991), 
has been modeled with neural nets before by Guenther and Gjaja (1996). This work had four 
aspects that make it difficult to use their model for our purposes. First, the learning rule was 
instar, which does not work for auditory dispersion (§6). Second, the inputs were only four 
AudF nodes, with a formant value unrealistically represented by the activity levels of two 
AudF nodes rather than by an array of nodes as here. Third, the state of SF was selected less 
realistically (i.e. more “manually”) than here, namely by setting all activities that did not 
exceed a certain threshold to zero (rather than by mutual inhibition). Fourth, the magnet effect 
was established by computing a “population vector” based on a computation of auditory 
distance; in our case, a “warped” AudF can be directly computed by clamping an AudF to an 
incoming F1 value, then computing the output SF, then clamping the SF at this output, then 
unclamping AudF and have activity spread back to it from SF; this reflection works correctly 
thanks to the bidirectionality of the connections, which Guenther and Gjaja could not 
implement. 

6. Auditory dispersion 

Auditory dispersion is a phenomenon in sound change whereby the auditory correlates of 
phonological elements become optimally distributed along one or more auditory dimensions. 
The emergence of auditory dispersion over the generations was handled successfully in 
BiPhon-OT (Boersma and Hamann 2008). In this section, we test whether BiPhon-NN is 
equally capable of doing the job. 

6.1. Existing work on auditory dispersion 

Languages tend to maximize the auditory contrast between elements in their phonological 
inventories (e.g. Passy 1890; Von der Gabelentz 1901; De Groot 1931; Martinet 1960). In a 
single auditory dimension, languages favor symmetric inventories whose members lie at equal 
distances along the auditory continuum, often with a preference for the center, as in Fig. 23. 
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Fig. 23. Typically dispersed phonological inventories. 
 
If we take as an example of an auditory continuum the voice onset time (VOT) in bilabial 
plosives, Estonian would be an example of a language with a single category, namely / p/ , 
which is realized with zero VOT (Fig. 23a); e.g. Swedish has two categories, namely / b/ , 
realized with negative VOT, and / ph/ , realized with positive VOT (Fig. 23b); and Thai has 
the three categories / b/ , / p/  and / ph/  (Fig. 23c). 
 Inventories as in Fig. 23 are optimally dispersed in the sense that they strike a perfect 
balance between perceptual clarity and articulatory ease (Lindblom 1986; Ten Bosch 1991; 
Boersma 1998). Practically speaking, optimal auditory dispersion entails that the categories 
are sufficiently auditorily distinct to minimize confusion in the listener, and that this 
distinctivity does not come at too large an articulatory cost for the speaker. 
 Boersma and Hamann (2008) formalize auditory dispersion within BiPhon-OT as the 
result of an interaction between cue constraints, whose ranking is a result of optimizing the 
learner’s prelexical perception during acquisition, and articulatory constraints, which aim for 
articulatory ease. When re-using the perception-optimized cue constraint ranking in 
production (phonetic implementation), the dispersion effect automatically emerges. With 
computer simulations, Boersma and Hamann show that optimally dispersed systems are 
diachronically stable, and that poorly dispersed systems evolve into stable systems within a 
small number of generations. The BiPhon-OT account is devoid of teleological devices such 
as the dispersion constraints proposed by Flemming (1995/2002: MINDIST), Kirchner (1998: 
DISP), and Padgett (2003: SPACE), whose sole purpose was to preclude categories from 
approaching each other; nor does the listener have to compute auditory distances, as in 
Wedel’s (2006) exemplar-based account. 

6.2. A neural network for auditory dispersion 

We will try to replicate Boersma and Hamann’s results with BiPhon-NN. We propose that 
after the unsupervised bottom-up creation of categories of §5, the learner creates a lexicon of 
phonological word forms (at UF), which is capable of “supervising” perceptual learning. That 
is, once the learner has established a lexicon, the lexicon can provide top-down information, 
in effect telling the network what phonological category to expect, or what phonological 
category it should have perceived. To this end, we consider the neural network in Fig. 24, 
which just as the one we used in §5.6 has with three layers: the phonological surface form 
(SF), the auditory-phonetic form (AudF), and the articulatory-phonetic form (ArtF). 
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Fig. 24. The initial state of the neural network. 

 The network has nine SF nodes for a distributed representation of the categories. As was 
approximately the case throughout section 5, each discrete phonological category is 
represented by three SF nodes: category 1 corresponds to SF nodes 1, 4, and 7, category 2 to 
nodes 2, 5, and 8, and category 3 to nodes 3, 6, and 9. As before, there are inhibitory 
connections within SF. 
 The AudF layer again represents the F1 dimension, sampled again in 30 steps. Each 
AudF node is connected to both SF nodes by excitatory cue connections (drawn in black) 
whose initial weights have random values between 0 and 0.1. Each AudF node is also 
connected to the ArtF node by an inhibitory articulatory connection (drawn in light grey); as 
in §5.6, these are stronger (i.e. drawn thicker) at the edges of the AudF layer, to represent the 
idea that the production of a peripheral value requires more articulatory effort than the 
production of a central value. 

6.3. Learning to perceive 

The simulated learner will have to establish the appropriate cue connection weights of the 
ambient language through a process of perceptual learning. Before the learning process 
begins, the initial language is created: for every category, a normal distribution of input 
probabilities along the auditory continuum is computed. In each learning step, a combination 
of a category and an auditory value is selected at random; if a value has a high input 
probability given the selected category, it is more likely to be drawn. Combinations of 
categories and auditory values are chosen because the learning process is supervised by 
information from “above”, i.e. from the lexicon and the phonology of the UF-to-SF mapping: 
somewhat artificially, it is assumed that the learner’s lexicon is already in place, i.e. she 
knows what category she should have perceived. The selected AudF nodes are switched on, as 
are the selected category nodes; subsequently, all AudF and SF nodes are clamped, and the 
weights of the cue connections are updated with the inoutstar rule (§4.7). After 50,000 tokens 
(learning rate = 0.01) from a language with input peaks as in Fig. 13, i.e. at 16.667% of the 
auditory continuum (category 1), at 50% (category 2) and at 83.333% (category 3), the 
network from Fig. 24 comes to look as Fig. 25: 

[ArtF]

[[AudF]]

/ SF/
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Fig. 25. The neural network after 50,000 learning steps. 

The left third of the AudF layer is more strongly connected to SF nodes 1, 4 and 7 than to 
other SF nodes, so the network has learned that low auditory values are most likely to be 
intended as category 1; mid auditory values connect to the category 2, and high auditory 
values to catgeory 3, as the language environment dictated. 

6.4. Production: the articulatory effect 

The network is bidirectional, so it uses the same connections in production. Figure 26 shows 
how the network of Fig. 25 handles production. To see how a category is produced, its three 
SF nodes are switched on (activity 0.8), as shown by filled disks in the figure, while the other 
six SF nodes are switched off (activity zero), as shown by empty disks; all nine SF nodes are 
clamped at these values, as shown by solid circles. Additionally, now the ArtF node comes 
into play, clamped at an activity of 1.0, constraining the activities at the unclamped AudF 
layer. After activity spreads from SF and ArtF to AudF for 500 time steps, Fig. 26 shows the 
resulting activities on the AudF layer (negative activities are clipped at zero) in the production 
of each of the three categories. The strongest activities in Fig. 26 are between nodes 6 and 7 
(i.e. at 5.5/ 29 = 19.0% of the continuum), between nodes 15 and 16 (50%), and at node 24 
(23/ 29 = 79.3% of the continuum). 
 The locations of the strongest activities are important concepts. According to §2.5, we 
can regard these locations as the most probable auditory forms realized in production. When 
we look at their values, we see that they are different from what the learner has heard in her 
environment. The learner has shifted category 1 by 19.0% − 16.7% = 2.3% towards the center 
of the continuum, when compared to her language environment, and she shifted category 3 
towards the center by 83.3% − 79.3% = 4.0%. These values of 2.3% and 4.0% are typical: if 
we repeat the experiment, we see that learners will on average shift the two outside categories 
by 3% towards the center of the continuum. 
 It is clear where this shift comes from. As in §5.6, it comes from the articulatory 
constraints: auditory values around 19% and 79% are just somewhat easier to produce than 
values around 17% and 83%, so the learner’s cue constraints might prefer values around 19% 
and 79%, but her articulatory constraints move the values away from this effortful periphery. 

[ArtF]

[[AudF]]

/ SF/
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Fig. 26. Output activities for the three categories (peaks in input distribution as in Fig. 13). 

6.5. Production: the prototype effect 

The question is: will learners always shift the categories towards the center? That would be 
bad for the future of the language, because a sequence of learners would ultimately make all 
categories pile up in the very center of the continuum, where they merge into one. 
 Fortunately, near the center of the continuum a different effect counteracts the 
articulatory effect. Figure 27 shows a network that has learned 50,000 times from a 
“confusing” language where the distributions of the three categories have peaks at 40%, 50% 
and 60%. 

[ArtF]

[[AudF]]

/ SF/

[ArtF]

[[AudF]]

/SF/

[ArtF]

[[AudF]]

/ SF/
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Fig. 27. The neural network after 50,000 pieces of confusing data. 

The strongest cue constraints now connect the three categories at SF to much more central 
auditory values than in Fig. 25. The production, however, works as in Fig. 28. The strongest 
activities are at node 12 (i.e. at 11/ 29 = 37.9% of the continuum), between nodes 15 and 16 
(at 50%), and at node 19.3 or so (18.3/ 29 = 63.1% of the continuum). the two outside 
categories, therefore, have shifted 40%−37.9% = 2.1% and 63.1%−60% = 3.1% towards the 
periphery of the continuum. 
 What happened here? The outstar part of the learning algorithm makes stronger 
connections between AudF and SF if the probability of that SF given that AudF is greater; in 
fact, the weight goes towards the conditional probability of that SF given that AudF. Now, a 
more peripheral AudF value (say, at 30% of the continuum) is more likely to have been 
intended as category 1 than a more central AudF value (say, at 40% of the continuum), 
because around 40% of the continuum we are in a region where the distributions of category 1 
overlaps with the distribution of category 2. As a result, the connection between an AudF of 
30% and category 1 will be stronger than the connection between an AudF of 40% and 
category 1. As a result, the production of category 1 will favor an AudF of 30% over an AudF 
of 40%. This result replicates the observation that listeners choose more peripheral tokens as 
prototypical than they produce themselves (Johnson, Flemming and Wright 1993; explained 
with BiPhon-OT by Boersma 2006). The inoutstar algorithm employed here does not exhibit 
this “prototype effect” (Boersma and Hamann, 2008) as strongly as the outstar algorithm, but 
it employs it enough to shift the category by a several percent. 
 Summing up, then, categories whose centers lie near the periphery of the auditory 
continuum will tend to shift toward the center, whereas categories that overlap other 
categories will tend to move away from those other categories. Over the generations, an 
equilibrium will appear where all categories are approximately equally spaced around the 
center of the continuum; the distances between the category centers will not depend on where 
they were in the first generation. 

[ArtF]

[[AudF]]

/ SF/
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Fig. 28. Output activities for the three categories (peaks in input distribution as in Fig. 27). 

 

 Our simulations show, then, that BiPhon-NN, just as BiPhon-OT, is capable of 
replicating the emergence of optimal dispersion in phonological inventories. If the network 
learns the appropriate weights of the cue constraints in comprehension and then produces 
using the same connections, any input distribution will evolve into a stable system within a 
number of generations. It is thus crucial that the neural network is symmetric. 
 For more details on the properties of the neural network and learning procedure used 
here, and for simulations of other inventories, we refer to Seinhorst (2012), who also subjects 
the difference between outstar and inoutstar learning to closer scrutiny. 

[ArtF]

[[AudF]]

/ SF/

[ArtF]

[[AudF]]

/ SF/

[ArtF]

[[AudF]]

/ SF/
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7. Discussion 

One and the same network, with a single learning rule, namely “inoutstar” learning, has 
turned out to be able to handle but category creation (in a slightly brittle manner) and auditory 
dispersion (very robustly). While the instar rule is possible for category creation (as Guenther 
and Gjaja 1996 have shown), and the outstar rule is possible for the emergence of auditory 
dispersion (as shown by Seinhorst 2012), only the inoutstar rule, which is a combination of 
the instar and outstar rules, works for both. 
 The model achieves this success without having to represent or compute auditory 
distance. The interactivity of the processes is maintained because activity spreading in the 
neural network is interactive, i.e. simultaneously top-down and bottom-up, as in McClelland 
and Elman’s (1986) TRACE model. 
 The model cannot really represent more than one segment yet: no phonological structure 
beyond single categories can be represented yet in the distributed versions of the network. 
This points at a large-scale programme for future research. 

8. Conclusion 

The BiPhon-NN model is seen to handle some phenomena that psycholinguists and speech 
researchers have found in the lab and have never been modeled without a single framework 
before. The BiPhon-NN model is also biologically one step more plausible than an OT model. 
One of the main missing areas involves strictly phonological phenomena, which would 
require the model to represent at SF sequential or hierarchical structures. 
 
 
                                                
1 Parts of this work were presented at the 31st Annual Meeting of the Deutsche Gesellschaft für 

Sprachwissenschaft, Osnabrück, March 2009; the 45th Annual Meeting of the Chicago Linguistic Society, 
April 2009; the KNAW Academy Colloquium on Language Acquisition and Optimality Theory, Amsterdam, 
July 2009; the 5th International Conference on Native and Non-native Accents of English, "ód# , December 
2011; the 10th International Conference on Computational Processing of Portuguese Language in Coimbra, 
April 2012; the 20th Manchester Phonology Meeting, May 2012; the 2012 International Child Phonology 
Conference, Minneapolis, June 2012; the 19th Frysk Filologekongres, Ljouwert, June 2012; the 13th 
Conference on Laboratory Phonology, Stuttgart, July 2012; and the EGG Summerschool, Wroc$aw, August 
2012. We thank the audiences, as well as Silke Hamann and Kate%ina Chládková for their input. The research 
was sponsored by NWO grant 277-70-008 to Boersma, and NWO grant 021.002.095 to Benders. 

2 The smoothness of the curve shows that there is no major influence of the discretization of the input 
continuum on the activity curves. This desirable behavior is caused by the fact that the bumps at AudF have a 
Gaussian shape. With different input shapes, the activity curves at SF may display ripple. 
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