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Abstract 
We present a method for assessing categorical perception from 
continuous discrimination data. Until recently, categorical 
perception of speech has exclusively been measured by 
discrimination and identification experiments with a small 
number of repeatedly presented stimuli. Experiments by 
Rogers and Davis [1] have shown that using non-repeating 
stimuli along a densely-sampled phonetic continuum yields a 
more reliable measure of categorization. However, no analysis 
method has been proposed that would preserve the continuous 
nature of the obtained discrimination data. In the present 
study, we describe a method of analysis that can be applied to 
continuous discrimination data without having to discretize the 
raw data at any time during the analysis. 
Index Terms: categorical perception, continuous stimuli, 
discrimination 

1. Introduction 
In speech perception research, categorical perception of 
vowels and consonants has been assessed by experiments that 
involve identification and discrimination tasks. In an 
identification task, sounds that belong to the same category 
receive the same label. Identification has mostly been tested 
by means of a multiple-forced choice experiment in which 
listeners label each stimulus as one of the phonemes of their 
native (or second) language. 

In categorical perception, discrimination of sounds across 
a category boundary is easier than discrimination of sounds 
within a category. To test the discrimination of speech sounds, 
various laboratory tasks have been designed and utilized; 
among these are the AX (“same”–“different”) task, in which 
listeners indicate whether the sounds of a pair are the same or 
different, the AXB task, in which listeners identify the second 
sound of a stimulus triplet either with the first sound or with 
the last sound, or the 4IAX (four-interval “same”–“different”; 
or ABAA) task, in which listeners have to indicate whether the 
first or the second pair of a stimulus quadruplet contained a 
deviant sound; see [2] for a review. 

Discrimination experiments reported in the vast majority 
of previous studies have used a relatively small number of 
stimuli that were repeated multiple times within a single 
experiment; e.g. 7 tokens in [3], 15 tokens in [4], or 14 in [5]. 
However, a recent study has shown that “stimulus repetition 
reduces discrimination of within-category differences, and 
enhances between-category discrimination” [1, p.379]. In their 
study, Rogers and Davis [1] compared the results of a 
discrimination task with 2 stimulus pairs repeated 416 times to 
the results of a discrimination task with 96 stimulus pairs 
repeated 16 times, and found that numerous repetitions of a 
small number of stimuli increase the ‘categorical bias’. To 
obtain a reliable measure of listeners’ categorical perception, 
discrimination experiments should thus be designed with a 
large number of non-repeating stimuli created along a densely 
sampled phonetic continuum. In such a ‘continuous’ design, 
then, a plausible method of analysis should conform to the 

continuity of the obtained data. This was, however, not the 
case in Rogers and Davis’ study. In the data analysis they 
report, the continuous discrimination data are collapsed into 
several bins (namely, three) and the continuum thus becomes 
sparsely sampled. Analogously to their paper, we use a 
continuous experimental design, creating a discrimination 
experiment with 260 different stimuli sampled along a single 
phonetic continuum. Improving on their paper, however, we 
introduce a method that preserves the continuous nature of the 
obtained discrimination data throughout the analysis. 

2. The experiment 
In this section we report an actual perception experiment, 
which addresses discrimination within the continuum between 
[i] and [ɛ]. In section 3 we try to infer categorical perception 
along this continuum on the sole basis of the discrimination 
data obtained here. We did not elicit identification data, 
because the experiment was a part of a larger experiment that 
included continua on which the participants’ language had no 
categories. That larger experiment, which has a research 
question on feature generalization, will be reported elsewhere; 
the subject of the present paper is only the analysis method. 

2.1. Stimuli 

The stimuli were vowels along an F1 continuum synthesized 
with the Klatt synthesizer built into the program Praat [6]. The 
vowels all had the same F2 value, namely 2700 Hz, and the 
same F3 value of 3300 Hz. Along the F1 continuum, which 
ranged from 280 Hz (6.93 erb) to 725 Hz (12.86 erb), we 
synthesized 260 vowel tokens, that is, 130 stimulus pairs. The 
F1 distance between the two vowels within a stimulus pair was 
0.9 erb, and the F1 distance between two neighboring stimulus 
pairs was much smaller, namely 0.039 erb, thus maximizing 
the degree of continuity of the stimulus set. Both the within-
pair F1 distance and the between-pairs F1 distance were kept 
the same for all the 130 stimulus pairs along the continuum. 

 
Figure 1: The 130 stimulus pairs. Each pair consists of 

two points along the horizontal axis, connected here by an 
arc. The distance between the members of a pair is 

constant, i.e. 

€ 

s12 − s11 = s22 − s21 

2.2. Procedure 

Vowel discrimination was tested by means of a traditional AX 
task. The inter-stimulus interval (i.e. the time interval between 
the two members of a pair) was 500 ms, and the trial-initial 
silence (i.e. the time interval between the participant’s mouse 
click and the first member of the next pair) was 600 ms. Each 
of the 130 stimulus pairs occurred twice, that is, in one trial 
the pair member with the lower F1 was played first, while in 
the other trial with the same pair the member with the higher 
F1 was played first; this was to factor out any stimulus-order 

s11 s12 s21 s226.93 12.86



effects that have been reported in previous vowel 
discrimination experiments [7]. The complete set of 260 pairs 
of stimuli was presented in random order. 

As described above, the two members of a stimulus pair 
were never identical, and in fact the auditory distance between 
the two members of a pair was the same for every trial. 
Despite the fact that the two sounds were always different, we 
asked the listeners to indicate whether the sounds were 
different or the same. The F1 difference between the sounds 
was as small as 0.9 erb, i.e., about the size of a just noticeable 
difference for F1 [8]; in a pilot experiment, this turned out to 
be just small enough to generally make the number of “same” 
judgments of the same order of magnitude as the number of 
“different” judgments. 

In line with the definition of categorical speech perception, 
our listeners (whose language has at least two segmental 
phonemes along the presented vowel continuum) were 
expected to perceive stimulus pairs in some regions of the F1 
continuum as different (i.e., stimuli across a category 
boundary) and stimulus pairs in other regions of the F1 
continuum as identical (i.e., stimuli that lie within one 
category). We can find categorical perception if our listeners 
have more “different” responses for stimulus pairs in some 
regions along the vowel continuum than for stimulus pairs in 
other regions. The location of the category boundary will lie 
between the sounds that elicit the largest number of “different” 
responses. 

2.3. Participants 

The subjects in this experiment were 62 monolingual Czech 
speakers. They were university or high-school students 
between 18 and 29 years of age. They were paid a fixed hourly 
rate for their participation. In the present paper, which only 
addresses the analysis method, we discuss only three of these 
participants; we choose these three people because they seem 
to reflect the three most common strategies found among the 
62 listeners. 

3. Analyzing a listener 
The analysis of the data of a single listener runs as follows. 
The listener is confronted with N (here: 130) different stimulus 
pairs. The nth stimulus pair (n = 1..N) is repeated 

€ 

Kn  (here: 
always 2) times. Of these 

€ 

Kn  replications, the listener judges 
a pair as “same” 

€ 

sn  times, and as “different” 

€ 

dn  times, with 

€ 

sn + dn = Kn . 
Figure 2 shows the raw data of three listeners, all of whom 

gave at least 0 and at most 2 “different” responses for every 
stimulus pair. Since the visualization of the raw data by poles 
is not very informative with respect to where the 
discrimination peaks lie, the Figure also shows smoothed 
versions of the data, obtained by convolving the raw data with 
a unit-area Gaussian with a standard deviation of 10; an edge 
correction is obtained by dividing the resulting curve by the 
convolution of that same Gaussian with data consisting of all 
ones [9]. The smoothed curves suggest that participant 1 has a 
constant probability of judging “different”, that participant 2 
has a single discrimination peak around stimulus pair 49, and 
that participant 3 could have discrimination peaks around 
stimulus pairs 53 and 113. Whether these visual suggestions 
are correct, e.g. whether the small right-hand bump of listener 
2 is indeed irrelevant and the taller right-hand bump of listener 
3 is not caused by random variation, remains to be seen. The 
following three subsections therefore submit these data to 
several maximum-likelihood analyses, each of which 
corresponds to a different model of what the listener is doing. 

 
 

 
 

 
Figure 2: Raw data (grey poles) and smoothed data (solid 

curves) of three participants with apparently zero, one, 
and two discrimination peaks, respectively 

3.1. First model: no discrimination peaks 

Our first, simplest, model assumes that the listener has no 
categorical perception along the continuum but instead only 
has an acoustic discrimination strategy. Since we used 
constant distances along the auditorily uniform erb scale, an 
ideal acoustic listener has a constant probability 

€ 

pconst  of 
judging any stimulus pair as “different”. In other words, the 
probability 

€ 

pn  that the nth stimulus pair is judged as 
“different” is simply 

 

€ 

pn = pconst  (1) 

Although an estimate of the parameter 

€ 

pconst  could simply be 
computed by dividing the total number of “different” 
judgments by the total number of trials (260), we here provide 
a more general method for estimating 

€ 

pconst , which can also 
be used for more complicated formulas for 

€ 

pn , as we do in 
sections 3.2 and 3.3. 

The likelihood of the data, given the values of 

€ 

pn , 

€ 

dn  and 

€ 

sn  from the experiment, is 
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€ 

L = pn
dn 1− pn( )

sn

n=1

N

∏  (2) 

The logarithm of this is the “log-likelihood” 

 

€ 

LL = dn ln pn + sn ln 1− pn( )( )
n=1

N

∑  (3) 

We now want to find the value of 

€ 

pn  that maximizes LL. We 
initially assign to the parameter 

€ 

pconst  a random value 
between 0 and 1 and subsequently add small positive or 
negative values to it, always checking whether LL improves 
(becomes less negative) according to formulas (1) and (3). 
Whenever LL improves, we keep the changed 

€ 

pconst  as our 
new best value of 

€ 

pconst , and we subsequently start again 
from this new value. After many iterations, in which the 
changes get exponentially smaller, we arrive at the best value 
of 

€ 

pconst . For listener 1 it is 0.508, for listener 2 it is 0.319, 
and for listener 3 it is 0.304. The top row of Figure 3 shows 
these values, together with the best LL values obtained. The 
optimized 

€ 

pconst  values are indeed identical to the overall 

fraction of “different” responses. The Figure suggests that the 
fit is good for listener 1 but not for listeners 2 and 3. 

3.2. Second model: one discrimination peak 

Our second model assumes that the listener mixes an acoustic 
discrimination strategy with a categorical perception strategy 
based on the existence of two categories along the continuum. 
We assume, therefore, that the probability of a “different” 
judgment shows one peak somewhere along the continuum: 

 

€ 

pn = p− + p+ − p−( ) e
−
n−µ( )2

2σ 2  (4) 

under the condition that 

€ 

p+  is always greater than 

€ 

p− . We 
again start with random values of the four parameters 

€ 

p− , 

€ 

p+ ,  

€ 

µ , and 

€ 

σ , and randomly change these parameters so as 
to increase the value of LL according to (4) and (3). Since this 
procedure can arrive in a local optimum, it is repeated 100 
times in order to find the “best best LL”. The results are shown 
in the middle row of Figure 3. The Figure shows both the 
fitted 

€ 

pn  itself and its smoothed version, which ought to be 

 

 
 

Figure 3: Maximum-likelihood fitting of three listeners, each with zero, one, and two peaks. Solid curves: smoothed data (copied 
from Figure 2). Dashed curve: fit (unlabelled vertical dotted lines:

€ 

µ ±σ ). Thick grey curve: smoothed fit.
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close to the smoothed data. We see that visually, the smoothed 
fit for listener 2 is indeed very close to her smoothed data. 

3.3. Third model: two discrimination peaks 

Our third model assumes that the listener has three categories 
along the continuum, and therefore two discrimination peaks: 

   

€ 

pn = p− + p+1 − p−( ) e
−
n−µ1( )2

2σ 1
2

+ p+2 − p−( ) e
−
n−µ2( )2

2σ 2
2

 (5) 

When we optimize the seven parameters in such a way that LL 
is maximized, we obtain the bottom row of Figure 3. For each 
listener, the smoothed fit is now close to her smoothed data. 

3.4. Comparison of the three models 

Instead of judging visually how an increase in the number of 
model parameters improves the fit or not, we should ask the 
question: does the likelihood rise significantly with each 
addition of parameters? The table below summarizes the 
values of LL for the three listeners, together with 

€ 

ΔLL , the 
increase in LL from the next simpler model. In accordance 
with what is common practice in the use of logistic regression, 
the p values in the table are derived from performing a 

€ 

χ2  test 
on 

€ 

−2ΔLL  (with 3 degrees of freedom, which is the number 
of parameters added to the model with each peak). 

 
Model  Listener 1 Listener 2 Listener 3 
No peaks  −180.187 −162.835 −159.663 
One peak  −177.210 −134.135 −146.360 
improvement  +2.977 +28.700 +13.303 

p  0.11 2.1·10-12 7.1·10-6 
Two peaks  −175.242 −132.199 −135.903 
improvement  +1.968 +1.936 +10.457 

p  0.27 0.28 0.00011 
Three peaks  −174.798 −131.987 −135.671 
improvement  +0.444 +0.212 +0.232 

p  0.83 0.94 0.93 
 

Table 1: Development of log-likelihood as a function of 
the number of modelled distribution peaks. 

Bold = statistically significant improvement. 

We see that the data of listener 1 show no evidence for any 
discrimination peak, i.e. that they are consistent with the idea 
that she listens acoustically (with a probability 

€ 

pconst  of 
hearing the difference) or that she has only one category (with 
a bias 

€ 

pconst  toward responding “different”); a mix of these 
two strategies is also possible. The data of listener 2 prove that 
she has at least one discrimination peak, i.e. at least two 
categories (again, 

€ 

p−  reflects the success of acoustic listening 
and/or a bias toward responding “different”); there is no 
evidence for more categories than two. The data of listener 3 
prove that she has at least two discrimination peaks, i.e. at 
least three categories; there is no evidence for more. 

4. Discussion 
Rogers and Davis [1] have found that discrimination tasks 
with a large number of different non-repeating stimuli are a 
more reliable measure of categorical perception than tasks 
with a small number of repeating stimuli. Along with that 
finding comes the need for a method of analysis suitable for 
such continuous discrimination data; devising such a method 
was our aim in this study. We presented a method that, unlike 
Rogers and Davis’ own analysis method, preserves the 

continuity (i.e. dense sampling) of the raw data throughout the 
analysis, and that thereby contributes to the reliability of any 
claims about categorical perception made on the basis of 
continuous data. We illustrated how the method works on 
continuous discrimination data of three real listeners. 

The present method fits the obtained discrimination 
function with several models that assume different numbers of 
discrimination peaks. Given that a peak in the discrimination 
function corresponds to a category boundary [5], this method 
determines a plausible (or at least minimum) number of 
categories along the stimulus continuum. The method also 
determines the locations and crispnesses of the boundaries. Of 
course one cannot divide the 62 listeners into three groups 
solely on the basis of the p values in Table 1 (one cannot prove 
that a listener does not have more peaks). Such a division may 
require adding latent variables to the model. 

The method of data analysis that we described is based on 
the search for peaks. Note, however, that this method of 
assessing categorical perception differs from the methods used 
previously not only in its continuous nature. In the literature, 
categorical perception has been assessed by comparing the 
obtained and the expected discrimination that was computed 
from identification results [5]; such a method is not feasible 
once listeners have no phonemic representations (i.e. no 
labels) for the stimuli. Thus, next to the main purpose of the 
present study, which was to provide a method for analyzing 
continuous discrimination data, we therefore also showed how 
categorical perception can be assessed solely on the basis of 
obtained continuous discrimination data, i.e. without reference 
to identification results. 
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