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This article shows that Error-Driven Constraint Demotion (EDCD),
an error-driven learning algorithm proposed by Tesar (1995) for Prince
and Smolensky’s (1993/2004) version of Optimality Theory, can fail
to converge to a correct totally ranked hierarchy of constraints, unlike
the earlier non-error-driven learning algorithms proposed by Tesar and
Smolensky (1993). The cause of the problem is found in Tesar’s use
of ‘‘mark-pooling ties,’’ indicating that EDCD can be repaired by
assuming Anttila’s (1997) ‘‘permuting ties’’ instead. Proofs show, and
simulations confirm, that totally ranked hierarchies can indeed be
found by both this repaired version of EDCD and Boersma’s (1998)
Minimal Gradual Learning Algorithm.
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1 The Goal of Learning Algorithms for Optimality Theory

Optimality Theory (OT), in the original version proposed by Prince and Smolensky (1993/2004),
regards a grammar as a totally ranked hierarchy of constraints; that is, no two constraints are
ranked at the same height. For this original version of OT, Tesar and Smolensky (1993) and Tesar
(1995) devise a number of learning algorithms, collectively called Constraint Demotion (CD),
whose goal it is, given a set of input-output pairs drawn from the target language, to find a
grammar (constraint ranking) that is compatible with that set of language data. Since the target
language is assumed to be generated from a totally ranked hierarchy, a learning algorithm can
be said to converge to a correct grammar only if the algorithm finds at least one totally ranked
hierarchy that makes all the given input-output pairs optimal. Imagine, for instance, a language
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with one input form i1, two output candidates o1 and o2, and three constraints C1, C2, and C3,
with as yet unknown rankings. The violation patterns are as in tableau (1).

(1) A small language

i1 C1 C2 C3

� o1 *

o2 * *

The check mark before the first candidate in (1) indicates that the input-output pair (i1, o1) is
optimal in the target language. The goal of a learning algorithm for OT now is to find at least
one total ranking of the three constraints so that candidate o1 becomes the optimal candidate in
the tableau for i1.

2 Algorithms That Succeed

All learning algorithms discussed by Tesar and Smolensky (1993) (Recursive CD, Batch CD,
Online CD) succeed in finding at least one totally ranked hierarchy for the language in (1), as
well as for any other language for which a totally ranked hierarchy exists.

For (1), all these algorithms work the same way. In the beginning, all three constraints are
ranked at the same height: in the same stratum. The input-output pair (i1, o1) is then given to the
algorithm as a ‘‘correct’’ learning datum. Since candidate o1 is apparently the winning candidate in
the target language, it is called the winner. The learning algorithm then selects from the tableau
a loser, which can be any competing candidate. Since tableau (1) contains only one competing
candidate—namely, o2—this candidate is deemed the loser. The algorithm now investigates which
constraints prefer which of the two candidates, and finds that C1 and C2 prefer the winner (namely,
o1) over the loser (o2), whereas C3 prefers the loser over the winner. The algorithm then takes
action by demoting the loser-preferring constraint C3 to a new stratum just below the first stratum,
where C1 and C2 remain. Since all information from this simple language has now been used,
the learning algorithm stops processing any further language data. The end result is the stratified
hierarchy in (2).

(2) Target stratified hierarchy obtained by the Tesar and Smolensky 1993 CD algorithms
�C1, C2� �� �C3�

Tesar and Smolensky (1993:18) call the ranking (2) the target stratified hierarchy, because
it contains all crucial constraint dominance relations of the target language while at the same time
having all constraints ranked as high as possible. We can see this as follows. First, the constraints
C1 and C2 are never violated in any correct form of the language (i.e., they are not violated in
(i1, o1)), so they can be ranked in the top stratum. Second, the constraint C3 must be outranked
by either C1 or C2 in any totally ranked hierarchy (otherwise, candidate o1 would never win), so
it cannot be in the top stratum. The result in (2) generalizes to any language generated by a totally
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ranked hierarchy: all learning algorithms presented by Tesar and Smolensky (1993) are guaranteed
to yield a unique target stratified hierarchy.

Although after finding the target stratified hierarchy in (2) the algorithm has stopped process-
ing language data, it has not finished yet, because (2) is not a totally ranked hierarchy. To make
the learning algorithm yield a totally ranked hierarchy, the target stratified hierarchy has to be
converted to at least one totally ranked hierarchy. Tesar and Smolensky (1993:22) provide a way
for doing this: ‘‘any totally ranked hierarchy consistent with the output (partially ranked) stratified
hierarchy will correctly evaluate all of the data presented.’’ Specifically, a result as in (2) ‘‘repre-
sents a class of all totally-ranked constraint hierarchies which give rise to the target language
. . . : the same optimal outputs arise regardless of the ranking of [the constraints within a stratum]’’
(Tesar and Smolensky 1993:12). This class is thus obtained by refining each stratum in (2) into
all the possible total rankings of the constraints within that stratum; this can be achieved by free
permutation (Tesar and Smolensky 2000:92). Thus, stratum 1 contains the constraints C1 and C2,
and these can be totally ranked in 2! (2-factorial) ways, that is, either as C1 �� C2 or as C2 ��

C1; stratum 2 contains only the constraint C3, and this can of course be totally ranked in just one
way. The totally ranked hierarchies that can be derived from (2) are therefore those given in (3).

(3) Totally ranked hierarchies obtained by the Tesar and Smolensky 1993 CD algorithms
C1 �� C2 �� C3

C2 �� C1 �� C3

The set of totally ranked hierarchies in (3) is the real output of the CD algorithms: unlike the
stratified hierarchy in (2), the totally ranked hierarchies in (3) are grammars that fit in Prince and
Smolensky’s (1993/2004) model of possible grammars, which are totally ranked hierarchies.

It must be noted here that the procedure does not necessarily find all totally ranked hierarchies
that are consistent with the data. For instance, the total rankings C1 �� C3 �� C2 and C2 �� C3

�� C1 are consistent with (1) yet do not show up in (3). But this is not important. What is
important is that the procedure finds at least one total ranking. This is guaranteed, because the
procedure is guaranteed (by Tesar and Smolensky’s proof) to find a target stratified hierarchy,
from which at least one totally ranked hierarchy can always be derived by the factorial refinement
procedure described above.

The final totally ranked hierarchies in (3) can be illustrated with production tableaux, as in
(4). They show that for each total ranking, the same correct candidate wins in production.

(4) Correct outputs after learning, in both totally ranked hierarchies

i1 C1 C2 C3 i1 C2 C1 C3

�☞ o1 * �☞ o1 *

o2 *! * o2 *! *

There is a way to combine these two tableaux into a single stratified tableau, as in (5).
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(5) A stratified tableau with permuting ties

i1 C1 C2 C3

�☞ o1 *

o2 *(!) *(!)

This tableau represents the target stratified hierarchy in (2). The dashed line between C1 and C2

indicates that the �C1, C2� stratum consists of a set of two tied constraints. It is important that
the constraint tie in (5) is a permuting tie (Anttila 1997): the tie represents a set of rankings
derivable from all the permutations of the constraints involved (if there are multiple strata, the
set of total rankings is obtained by permuting the constraints in each stratum independently).

3 The Problem: An Algorithm That Fails

Tesar (1995:95) notes that the CD algorithms described above do not have a very principled way
of choosing a loser. The illustrations of the algorithms in Tesar and Smolensky 1993 typically
consider all nonoptimal candidates as losers (one at a time), but this (as well as choosing an
informative candidate randomly) is problematic in cases where the candidate set is infinite. For
this reason, Tesar (1995:95) asks, ‘‘Can informative competitors be efficiently selected?’’ The
answer Tesar provides is a variant of Online CD. In an online learning algorithm, learning data
are provided to the learning algorithm one at a time; the algorithm receives a datum, then processes
it, perhaps making a change to the algorithm’s currently hypothesized ranking, and then forgets
it. Tesar proposes an error-driven variant on this (Error-Driven Constraint Demotion; EDCD),
where the loser is defined simply as the candidate that is optimal under the learner’s current
grammar hypothesis. This makes perfect sense, because precisely any mismatch between the
learner’s optima and the learning data signals that the learner has not yet arrived at a grammar
appropriate for the target language.

Here is how EDCD works for the language in (1). Tableau (6) shows the learner’s initial
grammar hypothesis, in which all constraints are ranked at the same height. The tableau also
shows the first (and only) language datum, which is the input-output pair (i1, o1); this is the
‘‘winner,’’ as indicated by the check mark.

(6) The learner’s optimal candidate in the initial state: EDCD with pooling ties

i1 C1 C2 C3

�☞ o1 *

o2 * *

Subsequently, EDCD has to compute the ‘‘loser’’—that is, the candidate that is optimal
under the current ranking of the three constraints. However, in this initial state of (6), all three
constraints tie. Since constraint ties are very common during CD learning, Tesar has to devise a
proposal for how constraint ties are to be interpreted. Instead of proposing the permuting ties of
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(5), Tesar proposes that the violations of all the constraints within a stratum should add up (the
marks of the constraints are pooled), as if these constraints together count as one larger constraint:
‘‘This extension treats constraints in the same stratum as having equivalent Harmonic value.
When comparing two descriptions, a mark assessed by one constraint may cancel with a mark
assessed by a different constraint in the same stratum’’ (Tesar 1995:96). On the basis of terminol-
ogy used by Tesar (2000:25), I call this a pooling tie. In tableau (6), this is indicated by having
no vertical lines between the tied constraints. Under the pooling-tie regime, then, the optimal
candidate in tableau (6) is candidate o1: this form wins in production (as indicated by the pointing
finger), because it incurs only one violation in the top stratum, whereas candidate o2 incurs two
violations in the top stratum. Candidate o1, then, is chosen as the ‘‘loser.’’

The intermediate result of processing the first datum, now, is that both the winner and the
loser are candidate o1. This is a situation that cannot occur for the earlier CD algorithms, in which
the loser can only be chosen from the nonwinners. For EDCD, the situation means that no learning
can be performed. This situation is general for error-driven learning algorithms: if the incoming
language datum is grammatical in the learner’s current grammar hypothesis, no learning will take
place.

Since (i1, o1) is the only possible language datum, and EDCD has noticed that it cannot
learn from it any longer, EDCD stops processing any more language data. The final stratified
grammar is given in (7).

(7) Final stratified hierarchy obtained by EDCD
�C1, C2, C3�

This final hierarchy is a correct grammar of the target language, under the assumption that in
production the violations of tied constraints are pooled. However, EDCD is not finished yet,
because it has to refine hierarchy (7) into one or more totally ranked hierarchies in order to make
the end result compatible with Prince and Smolensky’s OT. Unfortunately, this is impossible: the
permutations of the three constraints in the top stratum of (7) include the grammars C3 �� C1

�� C2 and C3 �� C2 �� C1, which would incorrectly map the input i1 onto the output o2.
EDCD thus fails to yield a correct set of totally ranked hierarchies for the language in (1).

This is in contrast with Tesar and Smolensky’s (1998) claim that EDCD is guaranteed to converge
to a correct stratified hierarchy (1998:264; discussed here in section 7) that can be refined into
a set of totally ranked hierarchies by randomly imposing an order on the constraints within strata
(1998:249–250). We must conclude, then, that EDCD fails in a way the authors did not foresee,
a way that renders the original version of EDCD incapable of learning the languages it was
designed for.

One could think that it might be possible to replace Prince and Smolensky’s grammar model
by a model that allows stratified hierarchies (with pooling ties), so that the final hierarchies with
pooling ties such as (7) are valid end results of learning. However, such an alternative grammar
model will exhibit cases where multiple outputs are optimal despite having different violation
profiles, and will therefore be unlearnable by EDCD, as the authors note (Tesar 1995:103, Tesar
and Smolensky 1998:249–250).
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We conclude that EDCD with pooling ties, as envisaged by Tesar and Smolensky, is not
guaranteed to converge to a correct grammar of any known type of target language: when given
data from a language generated by a totally ranked hierarchy, it does not always produce a correct
totally ranked hierarchy (as I have shown in this section), and when given data from a language
generated by a stratified hierarchy (with pooling ties), it often does not converge to any such
stratified hierarchy at all (as Tesar and Smolensky note themselves).

4 How Bad Is the Problem?

The reader might be concerned that the problematic case presented in section 3 is just a carefully
contrived counterexample to the correct convergence of EDCD and that this algorithm might fare
much better in typical realistic cases. To investigate this possibility, this section evaluates the
performance of EDCD on 1 million randomly generated languages.1

Each of the 1 million languages is created in the way described in (8), which creates a totally
ranked hierarchy and then derives a language from it (in the description, randomly refers to
uniform distributions of integer numbers).

(8) Simulation procedure: Language creation
1. Randomly choose a number of constraints N between 2 and 20.
2. Randomly choose a number of inputs M between 1 and 20.
3. Randomly choose a maximum number of violations Vmax (per cell) between 1

and 5.
4. For each of the M inputs:

4a. Randomly choose a number of output candidates between 2 and 20.
4b. Fill all tableau cells (for every candidate and every constraint) with a random

number of violations between 0 and Vmax.
4c. Determine the optimal output(s) given the total constraint ranking.

5. If any input has more than one optimal output (which can sometimes occur if two
candidates have the same violation pattern), go back to step 1; else stop.

The procedure in (8) is guaranteed to yield a nonvarying language for which at least one correct
totally ranked hierarchy exists (namely, the one that the language was derived from in the first
place). From it, we create a language environment (dataset) for learners by making a list of the
M possible correct input-output pairs, and determining that each of these input-output pairs is
equally likely to appear as a learning datum.

Subsequently, we create a learner, who has the same set of N constraints as the language
of (8), the same set of M inputs, the same output candidates, and the same violations in the cells.
The learner’s initial grammar is therefore identical to the grammar that generated the language
in (8), except that all constraints are ranked in the same stratum.

1 The Praat script that performs the simulations is available from http://www.fon.hum.uva.nl/paul/gla/.
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The learner subsequently receives language data, which are input-output pairs drawn ran-
domly from the language environment. Specifically, these data are drawn from the M possible
input-output pairs determined in (8), with equal probability. For each learning datum, the learner
performs the steps in (9), which is a description of the learning procedure explicit enough for
computer implementation.

(9) Learning procedure of Tesar and Smolensky’s EDCD
1. The learner receives an input-output pair (i, o).
2. The learner determines her own output, given the input i:

2a. The learner creates a total hierarchy from her current stratified ranking by col-
lapsing each stratum (all the constraints in a stratum are considered a single
megaconstraint, whose number of violations equals the sum of the numbers of
violations of the separate constraints).

2b. The learner determines the outputs that are optimal under this total ranking
(there may be multiple optimal outputs, as a result of identical violation patterns
after the mark pooling of step 2a).

2c. The learner randomly chooses her output from the set of optimal outputs deter-
mined in step 2b (Tesar 1995:98–101).

3. If the learner’s own output for i is different from o:
3a. Determine the stratum s that contains the highest-ranked constraint that prefers

o over the learner’s own output.
3b. All constraints that prefer the learner’s own output over o and that are not already

ranked in a lower stratum than s are demoted into the stratum just below s.

For each language created in (8), we wait until the learner in (9) has converged to the final
pooling-tie-based stratified hierarchy. Correctness is inferred only if all totally ranked hierarchies
derivable from this final stratified hierarchy correctly map each of the M inputs to its correspond-
ing correct output. The result of the simulations is that EDCD correctly converges for only 31%
of the 1 million languages. The conclusion must be that failures of EDCD are typical rather than
rare and that the algorithm is therefore in need of correction.2

5 The Cause of the Problem

When studying tableau (6), one can see that the cause of EDCD’s failure, and the success of the
earlier CD algorithms, lies in the fact that EDCD has no way of regarding candidate o2 as a loser.
Tableau (6) will instead always yield o1 as a loser, and this is a totally uninformative loser, since
it is identical to the ‘‘correct’’ form given in the language data.

2 Just for comparison, the Gradual Learning Algorithm (GLA) for Stochastic OT (Boersma 1998) correctly converges
for 99.5% of the languages (Boersma and Pater 2008), which means that that algorithm’s odds of correct convergence
are 400 times better than those of EDCD (at least on these randomly generated datasets). See Pater 2008 for examples
of misconvergence of the GLA.
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The failure of EDCD is thus caused by the inaccessibility of the potentially informative
candidate o2. The following remark by Tesar and Smolensky (in a discussion of EDCD) comes
to mind:

An antagonistic learning environment can of course always deny the learner necessary informative
examples, making learning the target grammar impossible. We consider this uninteresting and assume
that as long as there remain potentially informative positive examples, these are not maliciously withheld
from the learner. (Tesar and Smolensky 1998:246)

However, the learning algorithm itself turns out to have withheld the informative loser o2 from
the learner. Tesar and Smolensky’s proofs of convergence are based on bounding the number of
‘‘errors’’ (the output mismatches that lead to a grammar change in step 3) from above; for EDCD,
they show that the learner can make no more than some maximum number of errors. These proofs
are correct. In the example studied here, however, the learner will never even make her first error,
which is the error she needs in order to change grammar (7) into grammar (2).

The inaccessibility of candidate o2 as a loser is caused by the assumption of pooling ties:
only under that assumption will candidate o1 always be better than candidate o2 if all the constraints
are ranked at an equal height. Under the assumption of permuting ties, which was needed to in-
terpret the strata of the target stratified hierarchy in (2), candidate o2 will be able to win under at
least some total rankings of the tied constraints C1, C2, and C3.

6 The Solution

The solution to the problem that EDCD does not converge to a correct totally ranked hierarchy
is to use the same assumption for ties as was needed for converting the target stratified ranking
in (2) to the total rankings in (3), namely, Anttila’s (1997) assumption of permuting ties.

Under the assumption of permuting ties, the initial state is not (6) but (10). This time, the
three tied constraints have variable ranking, as indicated by the dashed lines within the (only)
stratum.

(10) The learner’s optimal candidates in the initial state: Variationist EDCD

i1 C1 C2 C3

�☞ o1 *

☞ o2 * *

Two pointing fingers now appear in tableau (10), because both o1 and o2 can be optimal outputs
under some of the total rankings of the three constraints. I now show that this leads to successful
learning.

In production, permuting ties have to be interpreted as variation in outputs across evaluations
(Anttila 1997). That is, at each tableau evaluation, the learner randomly chooses a total ranking
from among the ones allowed by the stratified hierarchy, that is, from all possible permutations
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of the constraints within each stratum. In (10), the stratified hierarchy allows six total rankings
(they were all mentioned in sections 2 and 3). Starting in the initial state of (10), the learning
algorithm will receive language data. In the case of the language in (1), the data will arrive as
(i1, o1), (i1, o1), (i1, o1) . . . The tableaux in (11) show how the learner handles these data.

(11) Error-driven learning with permuting ties

i1 C1 C2 C3 i1 C3 C1 C2

�☞ o1 * � o1 *!

o2 *! * ☞ o2 * *

When the first (i1, o1) comes in, the learner determines that candidate o1 is the ‘‘winner’’
(because it equals the given output). She then computes her own production for the given input
i1. She does this by establishing a random total ranking of the three constraints, in this case C1

�� C3 �� C2, as shown on the left-hand side in (11). This ranking leads to choosing o1 as the
optimal form and therefore as the ‘‘loser.’’ Since the loser equals the winner, no learning takes
place.

Then the second learning datum comes in, again (i1, o1) (for want of alternatives). The
learner again establishes o1 as the ‘‘winner,’’ but when she computes her own production for i1,
she now does that with a new random ranking of the three constraints, namely, C3 �� C1 ��
C2, as shown on the right in (11). The result is that candidate o2 becomes optimal (the ‘‘loser’’),
as indicated by the pointing finger. The learner has now finally made an ‘‘error,’’ since the winner
is different from the loser. As a result, the learner will demote all constraints that prefer the loser
(here, only constraint C3) into the stratum below the stratum that contains the highest-ranked
constraint that prefers the winner (here, both C1 and C2, which are still in the same stratum). As
a result, the ranking of (10) turns into the ranking in (12).

(12) Target stratified hierarchy obtained by EDCD with permuting ties
�C1, C2� �� �C3�

The ranking in (12) is also the final ranking: no amount of incoming (i1, o1) data will be incompati-
ble with it, because all total rankings associated with (12) will correctly turn the input i1 into the
output o1.

Tesar and Smolensky’s version of EDCD fails to converge to a correct totally ranked hier-
archy because the interpretation of constraint ties is different during learning than at the point
where totally ranked hierarchies have to be created; in particular, the final hierarchy in (7) is
based on pooling ties whereas extracting totally ranked hierarchies from it requires permuting
ties. The version of EDCD presented here, by contrast, converges to a set of correct totally ranked
hierarchies because constraint ties are interpreted as variationist throughout learning; in particular,
the final hierarchy in (12) is based on permuting ties, so that correct totally ranked hierarchies
can be extracted from it.
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7 The Proof

Tesar and Smolensky (2000:91–100) provide a correctness proof for EDCD. Interestingly, this
proof turns out to be correct for Variationist EDCD, but incorrect for EDCD-with-pooling-ties.

Tesar and Smolensky begin by showing that given a complete set of informative winner-
loser pairs, the constraint demotion procedure, when starting out with all constraints ranked in
the same stratum, is guaranteed to converge on the unique target stratified hierarchy, from which
a set of correct totally ranked hierarchies can be derived by a refinement procedure. According to
Tesar and Smolensky (2000:92), a constraint hierarchy is called a refinement of another hierarchy if
the former hierarchy preserves every constraint domination relation present in the latter hierarchy
(and I will use total refinement for any refinement that is a totally ranked hierarchy). Thus, Tesar
and Smolensky prove that given a complete set of informative winner-loser pairs, the constraint
demotion procedure yields a hierarchy from which a set of correct totally ranked hierarchies can
be produced by freely permuting the constraints in every stratum. Tesar and Smolensky go on
to show that if all constraints start out in the same stratum, the target stratified hierarchy will be
reached after at most N(N � 1)/2 informative winner-loser pairs (i.e., pairs that lead to at least
one constraint demotion), where N is the number of constraints. Likewise, they show that if the
constraints start out being ranked in an arbitrary order, a stratified hierarchy will be reached after
at most N(N � 1) informative winner-loser pairs:

(7.29) THEOREM. CD converges to a hierarchy generating L after no more than N(N � 1) informative
examples. (Tesar and Smolensky 2000:99)

where L is any language that can be generated by a totally ranked hierarchy. Although Tesar and
Smolensky do not explicitly state this, all total refinements of the ‘‘hierarchy’’ mentioned in their
(7.29) are again correct totally ranked hierarchies. We must note again (after section 3) that Tesar
and Smolensky regard such exhaustive total refinability as a crucial property of the hierarchies
produced by their learning procedures (2000:49).

Tesar and Smolensky’s next step is to define EDCD and to provide a theorem and proof
about its correctness:

(7.31) THEOREM. EDCD converges to a hierarchy consistent with all positive evidence from L, and
converges after at most N(N � 1) informative examples.

Proof. The theorem follows directly from theorem (7.29), and the fact that, for any observed winner,
if the learner’s hypothesized hierarchy does not find the winner optimal, production-directed parsing
will produce a competitor guaranteed to result in at least one demotion when CD is applied. (Tesar
and Smolensky 2000:100; also 1998:264)

In the formulation of this theorem, the term hierarchy must refer to a totally refinable hierarchy,
given that the authors’ proof refers to their theorem (7.29), which inherits this refinability from
the link to the target stratified hierarchy (Tesar and Smolensky 2000:97), which is totally refinable
(p. 94), and given the authors’ general commitment to exhaustive total refinability (p. 49). With
the term positive evidence, Tesar and Smolensky must refer to ‘‘the winners given in the dataset,’’
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that is, ‘‘the correct input-output pairs given in the dataset’’ (pp. 75–76, 99).3 A more explicit
version of the theorem must therefore be the following:

(7.31, explicit) THEOREM. EDCD converges to a stratified hierarchy that can be refined by intrastratal
permutation into a set of totally ranked hierarchies each of which is consistent with all correct input-
output pairs from L that the learner has been given; this convergence is achieved after at most
N(N � 1) informative examples.

The second part of this theorem is correct: EDCD converges (to a correct or incorrect grammar)
within N(N � 1) informative examples. Interestingly and crucially, this result is independent of
the way in which optimal outputs are determined, that is, of whether candidate evaluation proceeds
with pooling ties or with permuting ties: Tesar and Smolensky’s CD convergence proof (pp.
91–99) does not depend on candidate evaluation at all. It immediately follows that Variationist
EDCD, too, converges (to some grammar) within N(N � 1) informative examples.

But the first part of the theorem is incorrect for the original EDCD, as we have seen. Now
that the theorem has been clarified, we can see where the proof fails. The problematic phrase is
the claim ‘‘production-directed parsing will produce a competitor.’’ The term production-directed
parsing just means the evaluation of a tableau, that is, the determination of an optimal output
form given an input form, a constraint ranking, and a set of candidates with violation patterns;
the ‘‘competitor’’ here is simply what the authors elsewhere refer to as a ‘‘loser.’’ Here, the error-
drivenness of the algorithm demands that the loser is the learner’s optimal output form given her
current constraint ranking, that is, the result of production-directed parsing. The proof fails, now,
because this production-directed parsing is performed with the mark-pooling interpretation of tied
constraints, which is incompatible with the permuting interpretation of tied constraints that theo-
rem (7.29), which is used in the proof, refers to. By assuming permuting ties rather than pooling
ties, the proposal made here repairs this gap in Tesar and Smolensky’s proof.

Nevertheless, the proof for Variationist EDCD is not complete yet. Tesar and Smolensky’s
claim that the ‘‘theorem follows directly from’’ (7.29) and the ‘‘fact’’ that if a winner is ungram-
matical in the learner’s current grammar, production-directed parsing will produce a competitor,
is at best schematic. Here I provide a more elaborate proof. First we must note that the number
of errors (winner-loser mismatches) that the learner makes is limited to N(N � 1)/2 (when starting
with all constraints ranked at the same height) and that no constraint in the resulting grammar
can be ranked lower than in the target stratified hierarchy. This is what follows from (7.29) and
the theorems and proofs that precede it, such as (7.22), none of which depends on how constraint
ties are handled. Thus, either kind of EDCD learner is guaranteed to converge on a final constraint
ranking, and we only have to prove that for variationist learners this final grammar is a correct
exhaustively totally refinable stratified hierarchy.

3 Specifically, the term positive evidence cannot have been meant to include informative ‘‘losers,’’ for which the
authors use the term indirect negative evidence (2000:110).
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The proof, which works only if the number of inputs is finite and every input comes with
only one correct output (for infinite numbers of inputs, see section 8), is based on a reductio ad
absurdum. The aim of the proof is to show that the final grammar that the learner arrives at is
compatible with the set of input-output pairs that the learner is given—that is, that for each input
form, all total refinements of the final grammar yield the correct observed output form. Suppose,
then, that the final grammar that the learner arrives at is not compatible with the dataset. Then
at least one total refinement of the final hierarchy must yield an incorrect output for at least one
input. Since the number of inputs is finite, and under the assumption that no inputs will be
maliciously withheld from the learner, this specific problematic input is certain to arrive at some
time in the future, and in fact at an infinite number of times in the future. Each of those times,
the learner will compute her own output form on the basis of a newly randomly generated totally
ranked hierarchy (the refinement). Since the number of times that the problematic input will arrive
is infinite, and the number of constraints (and therefore the number of possible total refinements
of a stratified hierarchy) is finite, this problematic total refinement is certain to arrive at some
time. When it does, the learner’s own output form (the ‘‘loser’’) will have a different violation
pattern from the correct output form (the ‘‘winner’’) supplied in the dataset (because otherwise
there would be two optimal outputs), so that at least one constraint will get demoted. Hence, the
learner is not yet in the final grammar. Since the assumption that the final grammar (which is
guaranteed to exist) is incompatible with the dataset leads to a contradiction (namely, that the
grammar is not final), this assumption must be false, and the final grammar must be compatible
with the dataset. In fact, if all constraints start out at the same height, no constraint in the final
grammar can be ranked higher than in the target stratified hierarchy, because that would mean
that at least one crucial ranking of the target language is not honored (Tesar and Smolensky 2000:
93); since no constraint can be ranked lower than in the target stratified hierarchy either (as we
saw above), the final grammar must be the target stratified hierarchy.

We can now see accurately why the original EDCD fails. Analogously to the proof of the
previous paragraph, let us suppose that the final grammar of a mark-pooling EDCD learner is
not compatible with the dataset. Then (as before) at least one total refinement of the final hierarchy
(based on intrastratal permutation) must yield an incorrect output for at least one input. Once a
problematic input arrives, the learner will compute her own output form on the basis of a stratified
hierarchy with pooling ties. The problematic total refinement is no longer certain to arrive, because
the set of output forms derivable with pooling ties does not necessarily contain all total refine-
ments (as we saw in section 3). Therefore, the proof of the previous paragraph does not apply
to the original EDCD, because we do not arrive at a contradiction. In fact, Variationist EDCD
selects exactly the right set of ‘‘losers,’’ namely, all possible total refinements; any algorithm
that fails to select a certain total refinement (like the original EDCD) runs the risk of missing
information on crucial rankings, and any algorithm that selects a larger set of losers (like the
Online CD algorithm of Tesar and Smolensky 1993) will more often regard incoming input-output
pairs as uninformative and therefore converge more slowly. Convergence speed is addressed in
more detail in the following section.
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8 Convergence Times

The proof given in section 7 relies on the fact that a relevant contesting output is sure to be
generated at some point in the future. This is guaranteed by the fact that all possible total refine-
ments have an equal probability of being chosen, combined with the fact that the number of
constraints is finite; as a result, the probability that on a certain occasion (tableau evaluation) a
certain total refinement is chosen is nonzero. Thus, the probability that that total refinement is
not chosen is less than 1, and as the number of such occasions rises with time, the probability
that that total refinement remains unchosen approaches zero. What section 7 has proven, then, is
that Variationist EDCD converges in probability to a correct exhaustively refinable hierarchy (in
fact, to the target stratified hierarchy, if all constraints start out being ranked at the same height).
Both the original (incorrect) EDCD and Variationist (correct) EDCD rely on this kind of conver-
gence, the original EDCD by asserting that if there are two equally harmonic optimal output
forms (which can happen if they have identical violation patterns after mark pooling), there has
to be a random choice between them (see procedure (9), step 2c), and Variationist EDCD by
asserting that a totally ranked hierarchy must be chosen randomly and that if there are two equally
harmonic optimal output forms (which can happen if they have identical violation patterns without
mark pooling), there has to be a random choice between them (see procedure (13), step 2c).

The mechanism behind convergence in probability can be extended to the inputs. If the
number of inputs is finite, and each of these inputs has a finite probability of being chosen in
every input-output pair presented to the learner (which is guaranteed if, for example, the input-
output pairs presented to the learner are randomly drawn with equal probability from a finite
number of possible input-output pairs), then any problematic input (in the proof above) will arrive
at some point. This idea can be extended to a more realistic language, namely, one with an infinite
number of potential inputs but a finite number of kinds of informative inputs: if every kind of
informative input has a nonzero probability of occurring in the language data presented to the
learner, then any specific kind of informative input is sure to arrive at the learner at some point
in time. I follow Tesar and Smolensky (1998:246, 2000:51) in assuming without further discussion
that this is indeed the case (the ‘‘maliciously withheld’’ assumption). Thus, Variationist EDCD
is guaranteed to converge correctly if each kind of informative input has a nonzero probability
of occurring at any point in time.

There remains the question of how long it will take the learner to converge. Tesar and
Smolensky restrict their discussion of convergence times to establishing an upper bound on the
number of ‘‘errors,’’ which is N(N � 1). A full discussion of convergence times, however,
requires that one assesses the total convergence time of an algorithm, that is, the number of input-
output pairs needed. This includes discussing the time between errors. This time tends to become
longer as learning proceeds, because the number of potentially informative input-output pairs
tends to decrease with every error (Boersma 1998:327–328). Also, the probability that a potentially
informative input-output pair is actually informative can be quite small: with the original EDCD,
the set of the learner’s own optimal outputs, and therefore its subset of uninformative losers, may
be quite large as a result of mark pooling (imagine, for instance, an infinite candidate set), and
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with Variationist EDCD, this set and subset may be quite large if the number of constraints in a
stratum is large.

However, it is not very relevant to compare the worst-case convergence times of the original
EDCD with those of Variationist EDCD. Since the original EDCD ends up in a correct grammar
only 31% of the time (for the randomly generated languages of section 4), its convergence times
can be judged concisely as ‘‘too short 69% of the time.’’ In the present section, I therefore
investigate the convergence times of Variationist EDCD, by applying it to 1 million languages
generated by the method of (8). The precise learning procedure for Variationist EDCD, which is
required for performing computer simulations, is given in (13).

(13) Learning procedure of Variationist EDCD
1. The learner receives an input-output pair (i, o).
2. The learner determines her own optimal output, given the input i:

2a. The learner randomly chooses a total constraint ranking consistent with her
current stratified ranking under the assumption of permuting ties.

2b. The learner determines the outputs that are optimal under this total ranking
(there may be multiple optimal outputs, if two candidates have identical violation
patterns).

2c. The learner randomly chooses her output from the set of optimal outputs deter-
mined in step 2b.

3. (The same as in Tesar and Smolensky’s EDCD: procedure (9), step 3.)

For each of the 1 million randomly generated languages, we now simulate one virtual learner
who begins with all constraints ranked at the same height, and we measure the number of input-
output pairs that this learner takes to converge to the target stratified hierarchy. Figure 1 shows
a histogram of the 1 million convergence times. The slowest learner requires 1,435 pieces of data
(input-output pairs) to converge. However, 50% of the learners need no more than 41 pieces of
data, and 99% need no more than 283. The convergence time correlates positively with the number
of inputs M (r � 0.540) as well as with the number of constraints N (r � 0.272), and it correlates
negatively with the maximum number of violations Vmax (r � �0.214). The straight envelope
(after time 10) suggests that the probability that a learner has not converged diminishes exponen-
tially with time (like the probability that no six will fall in repeated die throwing). It can be
concluded that Variationist EDCD converges quite fast in practice, much faster than in the theo-
retical worst case.4

9 An Earlier Correct Error-Driven Constraint Demotion Algorithm

Variationist EDCD is not the first correctly converging error-driven constraint demotion algorithm
that has been found. An earlier one is the Minimal Gradual Learning Algorithm (Boersma 1998),
whose learning procedure is given in (14).

4 In the 31% of cases in which EDCD-with-pooling-ties converges to a correct grammar, the convergence times turn
out to be comparable to those found here for Variationist EDCD.
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(14) Learning procedure of the Minimal GLA
1, 2. (The same as in Variationist EDCD: procedure (13), steps 1 and 2.)
3. If the learner’s own output for i is different from o:

3a. Determine the highest-ranked constraint (highest-ranked in the randomly se-
lected total ranking) that prefers the learner’s own output over o.

3b. Demote that constraint by one stratum.

In steps 3a and 3b, this algorithm is somewhat simpler than Variationist EDCD in that it does
not have to compute the highest-ranked constraint that prefers o over the learner’s own output;
the drawback is that it is expected to be slower than Variationist EDCD because it can demote
only one constraint at a time, and by only one stratum at a time. The Minimal GLA comes with
a proof (Boersma 1998:323–327) that contains ideas similar to those in Tesar and Smolensky’s
CD proofs, and converges to a correct exhaustively totally refinable stratified hierarchy within
at most N(N � 1) demotions. Again, if all constraints start out being ranked equally high, the
final grammar is the target stratified hierarchy, and it is reached within N(N � 1)/2 demotions.
Although the proof that the final grammar is a correct grammar of the target language (Boersma
1998:325) is not much more explicit than Tesar and Smolensky’s proof for EDCD (discussed
here in sections 7 and 8), we can now (on the basis of sections 7 and 8) confirm that the Minimal
GLA does not have the problems of the original EDCD, because it explicitly uses permuting ties
(Boersma 1998:324) and therefore shares the correctness proof of Variationist EDCD.

Figure 2 gives a histogram of the convergence times for 100,000 Minimal GLA learners,
each fed with a different set of randomly generated language data. The slowest learner requires
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Figure 1
Histogram of convergence times of 1 million Variationist EDCD learners. The vertical scale is
logarithmic.
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1,920 pieces of data, 50% of the learners need no more than 104 pieces of data, and 99% need
no more than 629. Again, the convergence time correlates positively with M (r � 0.58) and N
(r � 0.52), and negatively with Vmax (r � �0.04, which is different from zero with p � 5⋅10�41).
When comparing these results with those of section 8, we can conclude that Variationist EDCD,
in which multiple constraints can be demoted by multiple strata at once, converges about twice
as fast as the Minimal GLA.

Algorithmically, we can see that the correctly convergent Variationist EDCD of (13) com-
bines steps 1 and 2 of the correctly convergent Minimal GLA of (14) with step 3 of the incorrectly
convergent original EDCD of (9).

10 Implications for Work That Depends on EDCD

Problems with mark pooling have been noted before, although never in relation to the incorrectness
of EDCD as a learning algorithm for OT. It is of some importance, however, to label the problems
with the original EDCD as an issue of correctness: since mark pooling comes with an incorrect
learning algorithm, learning procedures that rely on pooling ties have to be reformulated in terms
of permuting ties and subsequently reassessed.

As far as I know, the first mention of Variationist EDCD was in Boersma 2003:440, where
I compared the performance of several learning algorithms, among which were EDCD with
‘‘crucial ties’’ (pooling ties) and EDCD with ‘‘variationist ties’’ (permuting ties), on Tesar and
Smolensky’s (2000) set of 124 hidden-structure problems: ‘‘learners with crucial ties acquire
twelve more languages than those with variationist ties.’’ As we now know, the term acquire
here merely refers to convergence, which is incorrect convergence in the case of ‘‘crucial ties’’
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Figure 2
Histogram of convergence times of 100,000 Minimal GLA learners
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and correct convergence in the case of ‘‘variationist ties.’’ Hence, by not seeing the incorrectness
of pooling ties and by therefore taking them as a serious option, my (2003) assessment of the
various learning algorithms overestimates the performance of EDCD, something that Pater and
I (Boersma and Pater 2008:32) corrected by using Variationist EDCD. My (2003:440) verdict
that pooling ties are unrealistic (‘‘How can one weigh a single violation of the binary constraint
NON-FINALITY against multiple violations of the gradient constraint FEETL?’’) must now have
been reduced to just a secondary point of concern.

The problem I noted with EDCD in section 3 was not noted in the original literature on
EDCD (Tesar 1995, Tesar and Smolensky 1998, 2000). In a later discussion of error-driven
learning, however, Tesar (2000:25–28) says, ‘‘The mark-pooling interpretation . . . of stratified
hierarchies . . . can sometimes cause error-driven learning to stop before reaching a hierarchy in
which the desired winner beats every competitor by constraint domination alone [i.e., a totally
ranked hierarchy].’’ Tesar relates the problem to mark pooling, but does not link it to the mismatch
between the pooling ties of learning and the permuting ties needed to convert stratified hierarchies
to totally ranked hierarchies. Therefore, rather than resorting to the already known permuting-tie
mechanism in tableau evaluation (Anttila 1997, Boersma 1998), which would have solved the
problem straightforwardly, Tesar provides a different, tentative solution in terms of ‘‘conflict
ties’’ (without a correctness proof). Consider the small language in (15).

(15) Pooling ties, permuting ties, conflict ties

i1 C1 C2

� o1 ***

o2 ***

o3 * *

o4 ****

Tableau (15) can be regarded as the initial state of the grammar, with C1 and C2 ranked at the
same height. Under the pooling-tie regime, candidate o3 is optimal, because it incurs fewer viola-
tions (namely, 2) in the top stratum than any other candidates do; so o3 will be deemed the
‘‘loser’’ for EDCD. Under the permuting-tie regime, by contrast, candidates o1 and o2 will be
optimal interchangeably, depending on which total ranking is randomly selected at each evalua-
tion; so both o1 and o2 will perform as ‘‘losers.’’ Under the ‘‘conflict-tie’’ regime, finally, the
learner looks for a set of candidates where each two members are preferred by different constraints;
thus, the members of the pair o1�o2 are preferred by different constraints (C1 prefers o2, C2

prefers o1); the same is true for the members of the pair o2�o3, the members of the pair o1�o3,
the members of the pair o1�o4, and the members of the pair o3�o4; the learner will therefore
consider all members of the set �o1, o2, o3� as ‘‘losers’’ (candidate o4 is not included, because
the members of the pair o2�o4 do not tie). From section 7, we can see that this set is larger
than necessary: the number of candidates considered under the ‘‘conflict-tie’’ scenario (three) is
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somewhere between the number considered by Variationist EDCD (two) and the number consid-
ered by the non-error-driven CD algorithms (four); this implies that convergence times will be
longer than necessary. A more important problem is that the conflict-tie scenario is poorly defined
as a mechanism for determining optimal forms, because the ‘‘is tied with’’ relation is no longer
transitive (Tesar 2000:27): if the evaluation of tableau (15) proceeds from top to bottom, then in
order to see that candidate o4 is not optimal, it has to be compared with the whole set �o1, o2,
o3� rather than with just any one of the optimal forms (as in the mark-pooling and permuting-tie
scenarios). Because of this potentially explosive behavior in evaluation, Tesar is dissatisfied with
conflict ties himself: he rightly judges them ‘‘a bad replacement for [mark pooling] in general’’
(p. 27) and decides to use them ‘‘sparingly’’ (p. 27).

A problem shared by the pooling and conflict ties has to do with the continuity between
children’s grammars and adult grammars. In (15), an especially problematic candidate is o3: it
can be optimal (and would therefore be produced by the child) in both the pooling-tie and the
conflict-tie scenarios, although in a factorial typology it is harmonically bounded by the combina-
tion of C1 and C2 (and would therefore never be produced by an adult with a totally ranked
hierarchy). By contrast, the permuting-tie scenario restricts the set of potentially informative
‘‘losers’’ to o1 and o2, precisely the set of possible optima under intrastratal ranking permutation;
since such permutation is the manner in which totally ranked hierarchies will have to be constructed
from the final stratified hierarchy, Variationist EDCD ensures that both children and adults are
subject to the same general typological restrictions of OT, namely, factorial typology.

The fact that pooling ties generate too few ‘‘errors’’ (section 3) is also noted by Jesney and
Tessier (2007:7–8), who regard it as a problem for ‘‘restrictive learning’’ rather than as a correct-
ness problem for EDCD. They suggest that ‘‘[w]e can resolve this issue by requiring that con-
straints be strictly ranked with respect to one another . . . either in the grammar itself or with
each iteration of Eval’’ (p. 7). The former suggestion cannot be implemented yet, as there is no
known correctly convergent constraint-ranking algorithm that maintains a totally ranked hierarchy
throughout learning. The present article therefore shows that the latter suggestion can be imple-
mented by constructing, in each evaluation, a totally ranked hierarchy from the stratified hierarchy
in a variationist manner, that is, by random intrastratal permutation in the manner of Anttila 1997
and Boersma 1998.

11 Conclusion

This article has identified two error-driven constraint demotion algorithms (the Minimal GLA
and Variationist EDCD) that provably converge to a correct ‘‘target stratified hierarchy,’’ which
can be expanded (by exhaustive intrastratal permutation) into a set of correct totally ranked
hierarchies. Both algorithms rely on interpreting constraint ties in a variationist manner, unlike
Tesar’s (1995) original EDCD, which relies on mark pooling and as a result often converges to
an incorrect hierarchy. Variationist EDCD thus becomes the fastest correctly convergent error-
driven learning algorithm for OT. Conditions on appropriate convergence that remain are that
the learner is given sufficiently rich data and receives full information about the structure of these
data.
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This result adds to the evidence that the correct interpretation of ties is variationist, that is,
that ties reflect a factorial permutation of total rankings. This idea was first voiced by Pesetsky
(1998), although in his case lower strata were allowed to influence the total subrankings of higher
strata. The present full idea of deriving total rankings by independent permutations within all
strata is explicit in one of the variations on partial ranking that Anttila (1997) proposes, as well
as in Stochastic OT (Boersma 1998), in which two constraints can never be ranked exactly equally
high during an evaluation. The most important empirical result of the present article for human
language learning, though, is that it predicts that at every moment during acquisition, the child’s
possible outputs form a subset of the ones allowed by factorial typology, which asserts that
languages can have precisely those forms that can be generated by total rankings of the universal
set of constraints. By operating with permuting ties, the proposed corrected EDCD ensures that
the idea of factorial typology also applies to child language, that is, there is a continuity between
the language of children and that of adults; a difference that remains is that in this view children
show variation but adults do not.

The proposed repair of EDCD may influence not only the workings of direct applications
of this algorithm, but also the workings of more elaborate learning procedures that utilize EDCD.
To begin with, Robust Interpretive Parsing with EDCD (Tesar and Smolensky 2000) was reas-
sessed in this way by Boersma and Pater (2008:32); similar reassessments could be applied to
other work involving Robust Interpretive Parsing with EDCD (e.g., Apoussidou 2007), to work
on the restrictiveness of EDCD-generated grammars (e.g., Jesney and Tessier 2007), and to work
involving elaborate learning procedures such as inconsistency detection (e.g., Tesar 2000). Most
investigations into these matters have to be left to the future.
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Themes, Cumulativity, and Resultatives: Comments on
Kratzer 2003
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According to Kratzer (2003), the thematic relation Theme, construed
very generally, is not a ‘‘natural relation.’’ She says that the ‘‘natural
relations’’ are ‘‘cumulative’’ and argues that Theme is not cumulative,
in contrast to Agent. It is therefore best, she concludes, to remove
Theme from the palette of semantic analysis. Here I oppose the prem-
ises of Kratzer’s argument and then introduce a new challenge to her
conclusion, based on the resultative construction in Mandarin. The
facts show that Theme and Agent are on equal footing, insofar as
neither has the property that Kratzer’s conjecture requires of a natural
relation.
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tive construction, Mandarin Chinese

1 Introduction

According to Kratzer (2003), the thematic relation Theme, construed very generally, is not a
‘‘natural relation.’’ She says that the ‘‘natural relations’’ are ‘‘cumulative’’ and argues that, while
Agent is cumulative, Theme is not. It is therefore best, she concludes, to remove Theme from
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