
	   1	  

The use of Praat in corpus research 
Paul Boersma 

 

Praat is a computer program for analysing, synthesizing and manipulating speech and other 

sounds, and for creating publication-quality graphics. It is open source, and available free of 

charge for all major computer platforms (MacOS, Windows, Linux), on both 32-bit and 64-bit 

operating systems. It can be downloaded from praat.org. 

 A speech corpus typically consists of a set of sound files, each of which is paired with 

an annotation file, and metadata information. Praat’s strengths are in the acoustic analysis of 

the individual sounds, in the annotation of these sounds, and in browsing multiple sound and 

annotation files across the corpus. Corpuswide acoustic analyses, leading to tables ready for 

statistical analysis, can be performed by scripting, as described by Caren Brinckmann 

elsewhere in this book. 

1. The windows of Praat 

When you start up the Praat program, two windows pop up: the Object window at the left, and 

the Picture window at the right. This figure shows both windows after the user has worked for 

some time with Praat: 



	   2	  

 

At the left side of the figure we see the Object window, which here contains three objects: a 

Sound (waveform) object, a TextGrid (annotation) object, and a Pitch (fundamental 

frequency) object. The TextGrid and Pitch objects are selected. To the right of the object list 

we see the commands available for the current selection; apparently, when you select a 

TextGrid and a Pitch together, you can only choose from a menu with drawing commands. At 

the right side of the figure we see the Picture window, which here contains a drawing of a 

TextGrid (a phonetic annotation of the utterance Hello world. Goodbye.) superposed on the 

pitch contour of this same utterance. Apparently, the user has just executed one of the Draw 

commands from the menu in the Objects window, and the result is this drawing in the Picture 

window. The orange rectangle around the drawing demarcates the selected part of the Picture 

window. If the user now does Copy in the Picture window and then Paste in her journal 

article that she opened in her favourite word processor program, the annotated pitch curve 

will show up in her article. 



	   3	  

1.1 The Object window 

A question that is often asked about Praat is why the Object window is necessary: couldn’t 

Praat, when the user opens a sound file, just show that file in its own sound window, and 

nothing else, as happens in some other programs? My answer is that the world of speech 

analysis is too large for that. 

 The world of speech analysis is a world consisting of sounds, spectra, pitches, 

annotation, speakers, lips, muscles, processing models, grammars, data tables, and much 

more. First, this means that a computer program that describes this world cannot get by by 

showing only a sound in a sound window: there also have to be spectrum windows, pitch 

windows, annotation windows, muscle windows, grammar windows, table windows, and 

more. Praat has all of these windows, but even they do not suffice, because several actions 

that phoneticians like to take require two or even three objects. In the figure above, for 

instance, the user drew a combination of an annotation and a pitch curve into the Picture 

window, and to achieve this she first had to select a TextGrid object and a Pitch object 

together. While it would be possible to draw a TextGrid from a TextGrid window, or a Pitch 

from a Pitch window (both possibilities exist in Praat), it is not possible according to any 

established graphical user interfaces to draw from two windows at a time. That is, to draw an 

annotation and a pitch curve together, the user would have to bring both the TextGrid window 

and the Pitch window to the top, and then say Draw. Since there are no intuitive ways of 

handling such situations in a one-object-per-window user interface, Praat uses the Object 

window for listing its objects, so that the user can select multiple objects at a time. Such 

multiple selection is natural not only in the above TextGrid-and-Pitch case, but also for 

instance when you want to concatenate 10 sounds: you just select the 10 Sound objects in the 

list and choose Concatenate. I would know of no intuitive way to accomplish this if every 

sound were only visible in its own window. 

 The Object window exists, then, because in the large world of speech analysis you will 

often want to work with combinations of objects (e.g. a TextGrid and a Pitch), with multiple 

objects of the same type (e.g. the 10 Sounds to be concatenated), and generally with a large 



	   4	  

number of objects: for instance, extracting the 64 channels from an EEG object gives you 64 

Sound objects in the list, and then choosing To Spectrum... gives you the corresponding 64 

Spectrum objects. Or, dropping all 40 sound files and all 40 annotation files in a certain 

directory on the Praat icon makes Praat loading all of them into the object list for fast 

inspection. Summarizing, having the Object window gives you the benefits of flexibility and 

scale. 

 Given the existence of an Object window, it is the natural place to handle file input 

and output. The objects in the list are just data structures in memory, like e.g. the documents 

in a word processor, and they are not necessarily connected to a file on disk. Thus, the Object 

contains the New menu, with which you can create new objects from scratch, the Open menu, 

with which you can read sound files, pitch files, annotation files, grammar files, and so on, 

from disk, and the Save menu, with which you can write any object (or collection of objects, 

if you select more than one of them) to disk in various formats. 

1.2 The Picture window 

As with the Object window, a question that is often asked is why the Picture window is 

necessary: couldn’t Praat just support copy-paste from the Sound window and the other 

object-specific windows? My answer is that that would not lead to publication-quality 

drawings. The Sound window is optimized for viewing (inspecting) and editing (modifying) 

waveforms, and the Pitch window does the same for pitch curves. Viewing and editing require 

seeing interpolated sample values, having a cursor and selection markers, having thick red 

pitch dots that you can click on and grab, and so on. Publishing requires a representation of 

waveforms and pitch curves as thin, typically black-on-white lines, with times and frequency 

markers at regular distances along the edges, and texts like “Time (s)” and “Pitch (Hz)” along 

the horizontal and vertical axes, as in the figure above. According to the What-You-See-Is-

What-You-Get (WYSIWYG) principle known from the human-computer interface literature, 

this publication-level representation should be visible to the user at the moment she chooses 

Copy or Print. If this representation cannot be in the Sound or Pitch window, it has to be in a 

different window, and that is what the Picture window is for. 



	   5	  

 Given the existence of a Picture window, it is the natural place to receive all drawings 

that move outside Praat. There are Draw commands in the Objects window if you select a 

Sound, Pitch, TextGrid, or some other object, and there are Draw commands in the Sound 

window, the Pitch window, or the TextGrid window, which allow you to draw the visible 

parts of the viewed objects into the Picture window. The Picture window then allows you to 

add markers and legends in the margins of the drawing, and to add text, circles, arrows and 

the like inside the drawing, at locations specified in seconds and Hz. From the Picture 

window you can copy, print, or save the drawings. The Picture window supports any colour, 

font size, line width, and line type, several fonts, and a large number of international and 

phonetic characters. 

1.3 Viewer and editor windows 

As said, viewing and editing windows for specific objects are optimized for viewing and 

editing. Such a window typically comes to the screen when you select an object and click 

View & Edit. For instance, if you select a Pitch object and click View & Edit, a Pitch 

window comes to the screen. When you zoom in a bit, it can look like follows: 



	   6	  

 

 

This Pitch window contains numbers between 1 and 9 to depict the quality of separate pitch 

candidates, red dots to mark the pitch candidates that are in the current optimal path, and a 

blue “unvoiced” bar at the bottom. You can click on the numbers and on the unvoiced bar to 

modify the pitch curve. Please note that the representation of the Pitch object in this window 

is quite different from its representation in the Picture window above. 

 Many object types in Praat can be viewed and edited in their own windows. Further on 

in this chapter we see examples of the Sound window, the TextGrid window, and the Corpus 

window. 

1.4 Other windows 

An important window in Praat is the manual window. When you choose Intro from a Help 

menu, the following manual window pops up: 



	   7	  

 

 

The Intro page is the best location for beginning users of Praat to start to get to know the 

program. As we see in the figure, the Intro contains information about the basic handling of 



	   8	  

sounds, spectra, pitches, annotation and manipulation, as well as links to more specialized 

tutorials. The blue texts in the Praat manual take you to other pages; to read a tutorial 

sequentially you can use the “1 >” button. There are currently around 2000 manual pages, 

whose levels vary between tutorials, reference pages, and technical information. The Search 

field at the top of the manual window gives you a list of pages matching the texts you type 

there; for instance, type “sound pitch” and click the Search button to get to the pages that 

discuss how a Sound object can be converted to a Pitch object, or to get to the pages that 

discuss what you can do when you select a Sound object and a Pitch object together. 

 The last window I discuss in this introduction is the Info window. If you select the 

Sound object in the first figure above and click the Info button in the Object window, Praat 

writes some information about the Sound object to the Info window: 

 

Results from any commands in the Query menus, which answer questions about a selected 

object, are also written into the Info window. The contents of the Info window can be copy-

pasted elsewhere, and saved to disk. 



	   9	  

2. The Sound window 

The first thing you want to do when you start up Praat for the first time is to put a Sound 

object in the list. To put an existing sound file in Praat’s object list, you can drop it on the 

Praat icon, or use Read from file... from the Open menu. A possibly more interesting way to 

get a Sound is to choose Record Sound... from the New menu, which pops up Praat’s 

SoundRecorder window: 

 

 

In this window, you press Record, then you speak, then you press Stop. You can then listen 

to your recording with Play, and if the result is OK, you get the sound a name, such as 

“HelloWorld” and click Save to list & Close. The recording then shows up as a new Sound 

object in the list: 



	   10	  

 

 

In the menus that appear to the right of the object list you see all the things you can do to the 

Sound: playing, drawing, querying, modifying, annotating, analysing, manipulating, 

converting, filtering, and combining it with other Sounds (if these are selected as well). The 

most “attractive” button, however, says View & Edit, and if you click it (or just press the 

Enter key), the selected Sound pops up in a new Sound window: 



	   11	  

 

 

In this example, we see the waveform of the Sound at the top (with time running from left to 

right), two analyses (a pitch superposed on a spectrogram) below it, and eight buttonlike 

rectangles with numbers above the waveform and below the analyses. These rectangles show 

what part of the Sound is visible, what part is selected, and what the remaining parts are. 

Since I already zoomed in once (by clicking the in button), only half of the total duration is 

visible, and one quarter of the Sound (0.724615 seconds) lies before (to the left of) the visible 

part, and one quarter lies after it. Since I selected a stretch of 0.393902 seconds, the visible 

part divides up into three parts. To play any of these parts, you click on the corresponding 

rectangle (to play the selected part, you can also just press the Tab key). You can scroll 

through the sound as you are used to in other computer programs such as word processors and 

web browsers. 

 The menus at the top of the window determine which analyses are visible. The grey-

scale image below the waveform is the spectrogram, a representation of the frequency content 

of the waveform at each point in time. The viewing range has been set here from 0 to 5000 



	   12	  

Hz, which allows you to see the formant movements (e.g. at the beginning the F2 rises from a 

[w] position to a [ə] position). The present chapter has no room to dwell on the large 

usefulness of the spectogram for phonetic research; for that, see Ladefoged (2005) and 

Ladefoged and Maddieson (1996). 

 The blue curve superimposed on the spectrogram is the pitch curve, a representation of 

the periodicity in the waveform at each point in time. The viewing range has been set here 

from 75 to 300 Hz, which is a typical range for male speech. At the beginning we can see the 

falling tone on world. 

 Other analyses that can be visualized in the Sound window are automatically measured 

formants, an intensity curve, and the glottal pulses. You can extract all these analyses from 

the Sound window to the Object window as separate Spectrogram, Pitch, Formant, Intensity, 

or PointProcess objects, if you want to inspect, edit, save, or draw them in more detail than 

the Sound window can do. Finally, the Pulses menu contains a Voice report command, which 

reports the voicedness, jitter, shimmer, and harmonics-to-noise ratio of the selected part of the 

sound. 

3. Annotation with the TextGrid window 

In Praat, you can annotate (or segment, or label) several types of time-based signals. The 

most often annotated type is the Sound. 

 The object type that handles annotation is the TextGrid. A TextGrid is a collection of 

tiers (this rhymes with cheers, not with liars). A tier is an ordered sequence of texts, each of 

which is connected to a point in time or to a stretch of time, as explained below. 

 To start annotating a Sound, you select a Sound object and choose To TextGrid... 

from the Annotate menu. A TextGrid creation window appears, which allows you to specify 

the names of the tiers: 



	   13	  

 

Suppose you want to annotate sentences, words, and phonemes. In the TextGrid creation 

window you may then want to specify three tiers, named “sentence”, “word”, and “phoneme”. 

You achieve this by typing “sentence word phoneme” into the text field labelled All tier 

names, as in the figure above (if you don’t yet know whether you need a certain tier or not, or 

whether it has the correct name, or whether the order of the tiers is correct, don’t worry: you 

can always add, remove, rename and reshuffle tiers later). You can leave the second text field 

empty, as in the figure, and click OK. A new TextGrid object, with the same name as the 

original Sound, then appears in the object list. You then select the Sound and TextGrid 

together and choose View & Edit: 

 

 

 A TextGrid window then appears on the screen: 



	   14	  

 

This TextGrid window shows three things: at the bottom, the contents of the TextGrid, which 

is initially just three empty tiers; at the top, the waveform of a copy of the Sound; in the 

middle, some analyses (in the figure, a spectrogram and a pitch contour) of this copy of the 

Sound. 

 In a TextGrid you can have two kinds of tiers: interval tiers, in which you can annotate 

stretches of time, and point tiers, in which you can annotate time points. 

3.1 Interval tiers 

All three tiers in the example TextGrid above are interval tiers. An interval tier is a sequence 

of adjacent time stretches that you can annotate. In the figure above, for instance, each tier 

consists of only one interval, which runs from 0 to 2.898458 seconds, and this interval is 

empty, i.e. it contains the text “”. In the figure, the user has already clicked in the 

spectrogram, so that there is a cursor at 0.216610 seconds. This cursor extends through the 

three tiers as a thick grey line, which comes with a blue circle on each tier. In the figure, the 

user has moved the mouse pointer onto the blue circle on the second tier. If the user now 

clicks in this circle, a new boundary will appear at the cursor position on the second tier: 



	   15	  

 

In this figure we see that now the second tier is currently selected (as seen by the red pointing 

finger, and the red colour of the tier number and tier name), and that inside this tier the new 

boundary is selected (as seen by the red vertical line with the yellow vertical line through its 

middle) and the second interval, which contains the cursor time (at its left edge) is also 

selected (as seen by the yellow rectangle). 

 You can directly type text into the selected interval. For instance, if you type “hello”, 

the second interval will come to contain the text “hello”: 



	   16	  

 

 

This figure shows that the text that you type will show up in the text field above the 

waveform, as well as in the selected interval (the reason for this is explained below). 

 Next, you want to add a boundary at the end of the word “hello”, and in the figure 

above the mouse pointer is already at the right location in the spectrogram, at 0.698939 

seconds. When you click there, the result is: 



	   17	  

 

Since the cursor time is still in the second interval (of the second tier), this interval is still 

selected. When you now click the blue circle (the mouse pointer in the figure already points at 

it), a second boundary appears, and the text “hello” moves to the left of that boundary, 

because the text cursor in the text field is after the last letter of “hello” (in the figure above). 

Instead of clicking into the blue circle, you can also just press the Enter key, which creates a 

new boundary at the cursor time in the selected tier. Either way, the result is that the new 

boundary is selected and you are ready to type text into the third interval: 



	   18	  

 

You can go on like this, and after editing all three tiers, perhaps with the help of some 

zooming and scrolling, the result may look like follows: 

 

 



	   19	  

Every tier has now been filled with data. There are now nine empty intervals, and all other 

intervals contain one or more characters. The selected interval contains the text “əː”, which 

could have been typed directly as “əː” with a Unicode input method but has here been typed 

quickly by an ASCII keyboard as a sequence of two backslash trigraphs, namely “\sw\:f” (= 

“schwa + phonetic colon”), which is seen in the text field and which is how the data will be 

saved to disk once you decide to save the TextGrid (there is a button for converting all 

backslash trigraphs in a TextGrid to Unicode if you want the TextGrid file to be readable 

outside Praat). 

 

Direct manipulation. Some types of annotation are very fast: if you annotate one tier from 

left to right, then it is typically a sequence of click (in the spectrogram, to set the cursor time), 

type Enter (to add a boundary in the tier), type the label, and then again click-Enter-type and 

so on. You don’t need to double-click to open a data entry window, and you don’t need to 

press command-enter to “save” the text into the object: the changes will occur at the moment 

you type. In the literature on human-computer interaction, this is called direct manipulation, a 

term that stresses two ideas at the same time, namely that you change things by grabbing them 

or typing, and that these changes are effective without confirmation. 

 The concept of direct manipulation can be observed by the strong connection of the 

TextGrid window to the TextGrid object in the list: if you type a character into a tier in the 

TextGrid window, the TextGrid object in the list immediately changes. You can see this if 

you open a TextGrid in a second window (i.e. choose View & Edit a second time): changes 

you make in one window are immediately reflected in the other. 

 Deliberately, the directness of the user interface applies to objects only, not to files. 

That is, a TextGrid is changed easily by dragging boundaries, clicking in circles, and typing 

text, but its state on disk is not changed until you explicitly perform one of the Save 

commands to create or overwrite a TextGrid file on disk. This combination of direct 

manipulation of objects and explicit saving to disk allows you to edit the data fast, and to 

experiment with the data easily (helped by the Undo command), without fear of overwriting a 

precious piece of saved data inadvertently. In these respects, Praat works quite differently 



	   20	  

from several other speech annotation programs, and instead is more similar to most word 

processors and drawing programs. 

 

Selecting a boundary. You can select a boundary by clicking in its vicinity. That is, if you 

click at the time of 1.065 seconds in the third tier of the figure above, the cursor will move to 

the exact end time of the interval labelled “əː”, i.e. to 1.043488 seconds (in reality, the 

precision is even greater than a microsecond). The precision of this “snapping” is perfect, e.g. 

much smaller than a pixel. 

 

Changing the position of a boundary. To change the position of a boundary, just grab it and 

drag it about. You can drag the boundary to any other time position as long as you don’t try to 

move it across its left or right neighbour. To move a boundary to the cursor time, just drag it 

to the vicinity of the cursor line and it will snap exactly to the cursor time. 

 

Perfectly adjacent intervals. In the figure, the interval labelled “hello” has to be perfectly 

adjacent to the interval labelled “world”. Since the tier is entirely divided up in intervals, with 

no empty spaces in between (an empty interval is still an interval), this adjacency is fully 

automatic: each boundary creation creates two perfectly adjacent intervals, i.e. there are never 

gaps between intervals. 

 

Adding two boundaries at a time. In the figure you could have created the interval “Hello 

world.” by selecting this whole sentence in the spectrogram and then pressing the Enter key. 

This adds two boundaries: one at the start of the selection and one at the end of the selection. 

 

Alignment across tiers. There are several methods for making two boundaries on different 

tiers perfectly aligned. In the figure above, the left boundary of “Hello world.” could have 

been set by clicking on the left boundary of “hello”, then clicking in the circle that appears in 

the first tier. Or, if you want the right boundary of “ai” to be at the exact same time location as 

the right boundary of “goodbye”, you can drag the right boundary of “ai” from the third tier to 



	   21	  

the vicinity of the right boundary of “goodbye” on the second tier. The boundary will then 

snap to the exact same time location as the end of “goodbye”. This perfect alignment across 

tiers can be seen in the TextGrid window: for instance, if you click on the left boundary of 

“goodbye” in the figure, it will be selected and the yellow vertical line will also run through 

the left boundary of “Goodbye.” on the first tier and the left boundary of “g” on the third tier. 

Finally, if you drag a boundary to move it and at the same time hold the Shift key pressed, 

any boundaries perfectly aligned with this boundary on other tiers will move with it, thus 

preserving the existing alignment (there is a preference setting for exchanging the dragging 

and Shift-dragging behaviours). 

 

Tier hierarchies. Several other annotation programs allow tiers to be hierarchically 

organized. The most common case is hierarchical subdivision, such as words that consist of 

syllables, syllables that consist of phonological segments, and so on. The most advertised 

example is that of the part of speech (POS), which allegedly has a one-to-one relationship 

with the word. In my opinion, the importance of such hierarchies is overrated. In the 

languages of the world, syllables often cross word boundaries (as in French petit ami, which 

is syllabified as .pəә.ti.ta.mi.), segments can cross syllable boundaries (as in Italian .grap.pa., 

with p.p being a single segment), and even the relationship between word and POS is not 

clearly one-to-one. Consider, for example, the following TextGrid: 



	   22	  

 

Here, the definition of a word is the easiest one: anything separated in the orthography by 

spaces or punctuation marks. The word “I’m”, then, corresponds to two parts of speech, 

namely a pronoun and an inflected (finite) verb, and, conversely, the infinitive verb 

corresponds to the two words “to” and “go”. Of course, you can adapt the definition of what a 

word is to your syntactic theory, or adapt the theory to your definition of a word, but that 

would either force you to reject your easy, and perhaps automatic, orthographic definition of 

the word or to reject your well-argued-for theory of what a syntactic word is. Praat, then, 

chooses not to restrict the relationships between boundaries on different tiers. To help you 

maintain a near-hierarchical relationship between tiers, Praat provides the easy cross-tier 

alignment methods described in the previous paragraph, and also has commands for searching 

for boundaries that are on tier X (e.g. the syllable tier) but not on tier Y (e.g. the segment tier), 

thus quickly finding locations that violate an approximate hierarchy (e.g. all the geminates). 

 I have to admit here that Praat’s TextGrid model, with its free cross-tier alignment, 

still has the restriction that intervals cannot be discontinuous. Thus, in a split infinitive like to 

boldly go you cannot label to and go as the same Vi, and boldly separately as an ADV. For 

such cases, which are much more common in many languages other than English, the 



	   23	  

TextGrid model fails, as do its hierarchical counterparts in other programs. The “annotation 

graph” model (Bird and Liberman, 2001) can represent such situations, because it allows 

overlapping intervals on its “tiers”, but its more restrictive implementation in EXMARaLDA 

(Kipp, this book) cannot; the annotation graph model allows even more flexibility by 

providing a “class” property for each label, by which coreference between intervals on the 

same or different tiers can be represented; none of the annotation programs described in this 

book seem to have built-in support for this capability. 

3.2 Point tiers 

In the examples above, the TextGrid annotates interval, i.e. stretches of time. You can also 

have tiers in which points in time are annotated. To have a TextGrid for two speakers, Mary 

and John, who have to speak after waiting for a bell to chime, you can select a Sound, choose 

To TextGrid..., and specify the three tiers in this way: 

 

In the first text field, you supply the three tier names, together with their order (“Mary John 

bell”); in the second text field, you tell Praat which of these three tiers has to be a point tier 

(“bell”). When you then click OK, select the new TextGrid together with the original Sound, 

and choose View & Edit, a TextGrid window pops up with two interval tiers and one point 

tier: 



	   24	  

 

In the figure the three tiers have already been edited. On the third tier, two points have been 

inserted, and each of these was labelled “b”. These points can be handled in much the same 

way as the boundaries of the intervals can be handled, except that you can drag points beyond 

their neighbours. 

3.3 What else can be annotated? 

Beside Sound objects, other types of objects that can be annotated are EEG (an 

electroencephalogram, which can be annotated for stimulus events) and Movie (a sequence of 

video frames). 

4. The Corpus window 

A corpus usually consists of multiple sound and annotation files. Praat can collect these into a 

single Corpus object, as long as the name of each annotation file is identical (except for the 

extension) to a name of a sound file. 

 With Create Corpus... from the New menu you can specify a directory of sound files 

and a directory of annotation files: 



	   25	  

 

In this example, no directory of annotation files is specified, so that Praat will look for the 

annotation files in the same directory as where it looks for the sound files. After you click 

OK, a new Corpus object appears in the list, and when you then choose View & Edit, a 

Corpus window pops up: 

 

 



	   26	  

In this example, I have already extracted the between-speaker factors (Gender and Dialect), as 

well as the speaker names, from the file names; such information will be saved when you save 

the Corpus object to disk. When you later open the same Corpus file in Praat and the sound 

and annotation files have not moved with respect to the Corpus file, the information shown in 

the figure will still be available. The corpus object saves the locations of the sound and 

annotation files as relative to its own location; this allows you to move and distribute the 

Corpus file with the sound and annotation files without breaking the links between them. 

 The Corpus object allows fast annotation of a new corpus. If you click on the name of 

an annotation file, Praat will pop up this annotation, together with the corresponding sound, in 

a new TextGrid window (it is easy to Save this TextGrid to its original location on disk). If 

there is a sound file without a corresponding annotation file, the column AnnotationFile 

contains a question mark in the relevant row. When you click this question mark, Praat 

creates a new TextGrid and opens it in a new TextGrid window, together with the sound 

(again, the Save command will know where this TextGrid has to be saved). 

 The Corpus window allows querying all its TextGrid objects at the same time. You 

can search for entire texts, substrings, regular expressions, and so on. The results will appear 

at the bottom of the Corpus window, and a click in that window will take you to the 

corresponding location in an annotation and waveform. 

 Automated acoustic analyses of e.g. pitch and formant values of the whole corpus 

have not been implemented, because the number of possible research questions is simply too 

high. You can implement such analyses yourself by programming them in the Praat scripting 

language, as described by Caren Brinckmann in an accompanying chapter. 

References 

Bird, Steven, and Liberman, Mark (2001). A formal framework for linguistic annotation. Speech Communication 

33: 23–60. 

Ladefoged, Peter (2005). Vowels and consonants: an introduction to the sounds of languages. Second edition. 

Malden, Mass. & Oxford: Blackwell. 

Ladefoged, Peter, & Ian Maddieson (1996). The sounds of the world’s languages. Oxford: Blackwell. 


