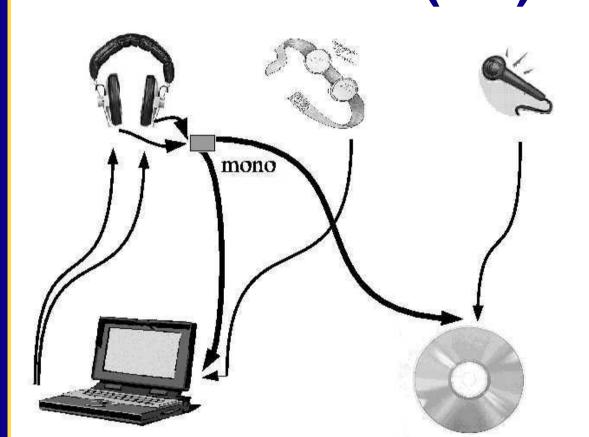
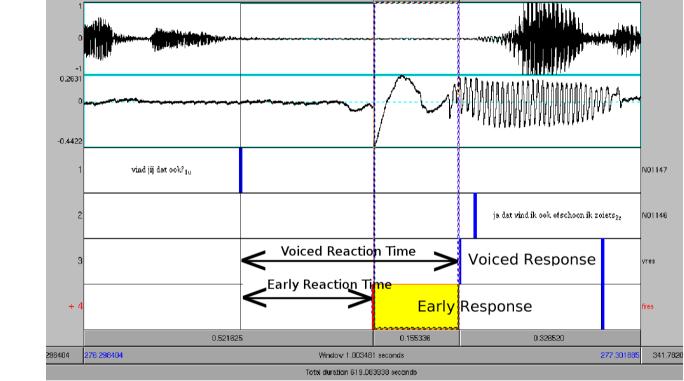
On the Sufficiency and Redundancy of Pitch for TRP Projection


Introduction


We are interested in the relative importance of various sources of (prosodic) information, e.g. pitch, pauses, stress*, in the perception of speech. To reach this goal, we're comparing the recognition and projection of Transition Relevance Places, or potential turn changes in (natural) human conversation in 'normal' and manipulated versions. Claims:

- Intonation is sufficient for TRP projection, perhaps redundant.
- End intonation (low mid high) affects TRP projection.
- TRP projection can start early in the utterance.

* See R.J.J.H. van Son, Wieneke Wesseling, and Louis C.W. Pols, 'Prominent Words as Anchors for TRP Projection', Interspeech 2006 session Mon2FoP, "Spoken Dialog Systems I", 14:00 Monday

Reaction Time (RT) experiment

Recording setup with laryngograph and audio

Speech with laryngograph signal and annotation of Speech, Voiced/Early RT and their difference (yellow)

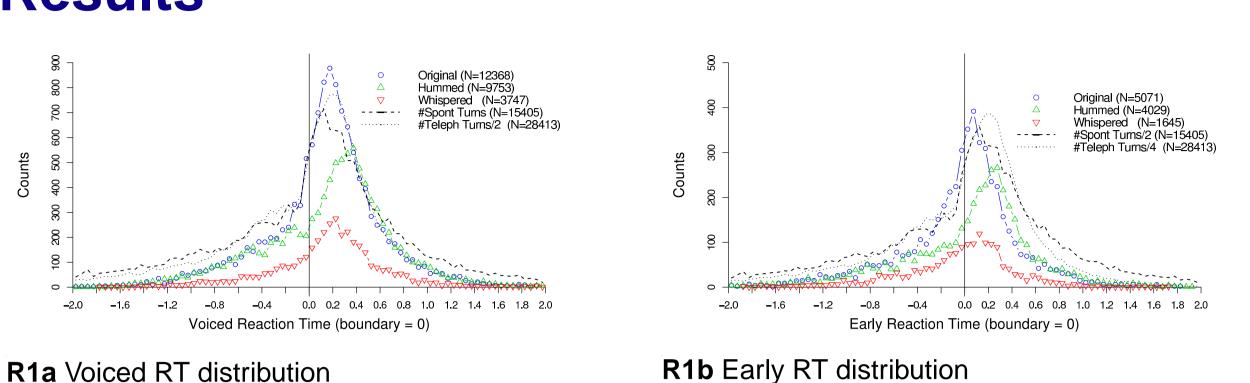
Stimulus set: 17 informal Dutch dialogs from Spoken Dutch Corpus, with basic annotation and hand aligned word boundaries (165 min., 6670 utterances, 7 switchboard and 10 home recordings).

- 1. Original condition
- 2. Hummed condition only intonation, resynthesized neutral vowel speech
- 3. Whispered condition no intonation, resynthesized from LPC analysis using white noise as sound source

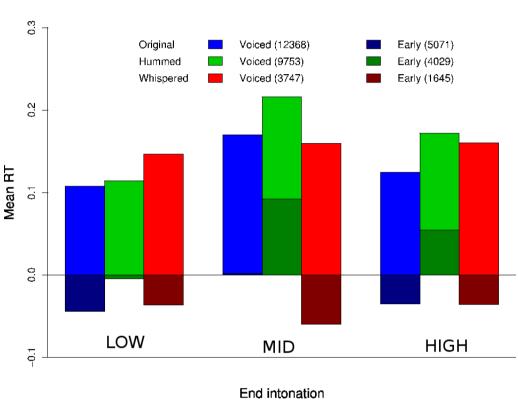
Task: Recognition of end-of-turns; Respond with 'minimal responses' ('AH') to prerecorded dialogs. The assumption is that at this point there is recognition of (at least part of) the utterance.

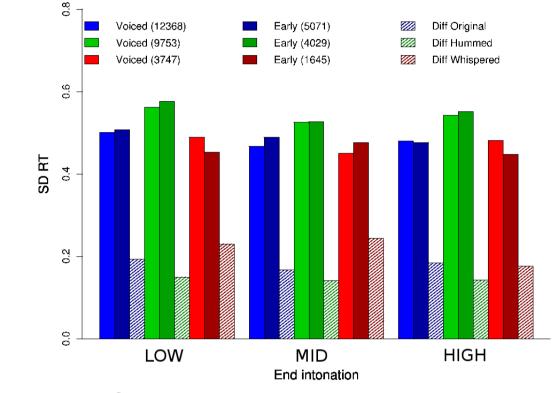
Responses: recorded with a laryngograph, automatically labeled in PRAAT

- Voiced Reaction Time (RT): Distance from the start of Voicing to the closest Utterance End (as defined in CGN) within a window of 1 second.
- Early Reaction Time (RT): Distance from start of Laryngograph signal to the Utterance End.


Subjects: 32 naive native Dutch speakers

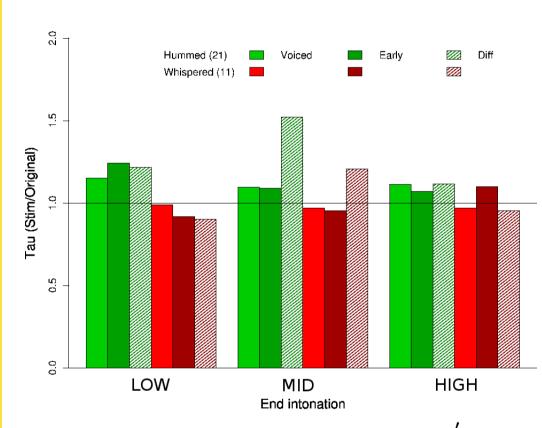
- Experiment 1, Original vs. Hummed, 21 subjects
- Experiment 2, Original vs. Whispered, 11 subjects

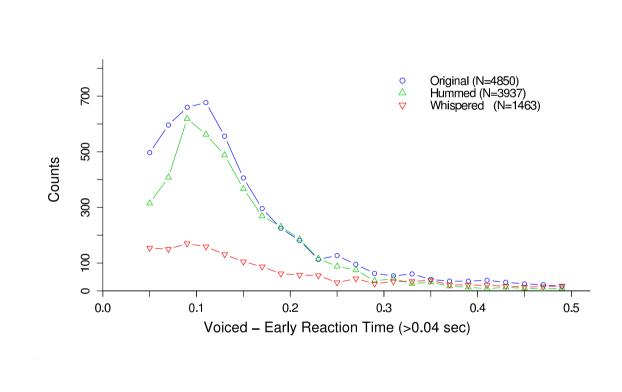

Intonation: for each utterance, the *end intonation* was automatically marked and hand-checked by human labelers, as low, mid or high.


Wieneke Wesseling, R.J.J.H. van Son, and Louis C.W. Pols Institute of Phonetic Sciences/ACLC, University of Amsterdam, The Netherlands W.Wesseling@uva.nl, R.J.J.H.vanSon@uva.nl

Results

R1: Response counts are already increasing before end of utterance → projection takes place in all conditions.

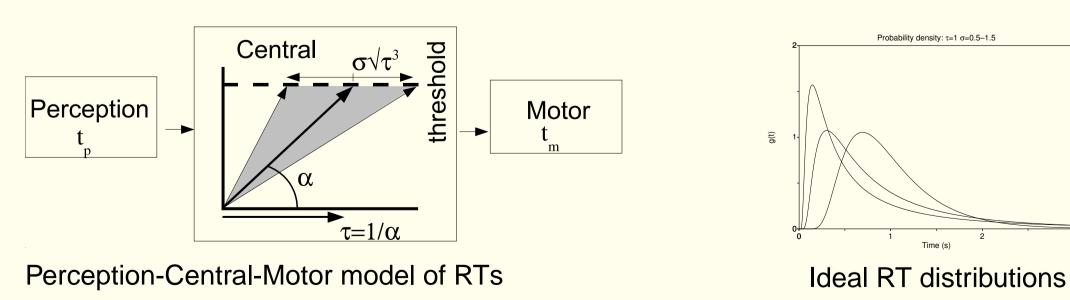




R2a Mean delays for three categories of boundary R2b Standard deviation of delays for the three tones (low, mid, high).

boundary tones (low, mid, high).

R2a: Longer RTs for *hummed* stimuli are only significant for *mid* and *high* boundary tones. R2b: Larger variances in both Voiced and Early responses for hummed stimuli.



R3a Relative "processing" time $\frac{\tau}{\tau}$ for three categories of boundary tones and different stimulus types

R3a: There is a relative increase in "processing time" for *hummed* stimuli. There is no effect or only slightly faster decision times for whispered stimuli.

Perception-Central-Motor model of Reaction Times

- Three stages of processing: a perceptual component (P) and a motor component (M), with a deterministic response-time t_0 and a central **decision making component** (C), characterized by a random walk to a decision threshold, determined by an integration-time $\tau = \frac{1}{\alpha}$.
- The proportion of integration times $\frac{\tau'}{\tau_{min}}$ can be determined from their respective variances.

Conclusions

- Impoverished hummed speech elicits delayed and more variable responses than original stimuli, but subjects are still able to project TRPs with high reliability using only intonation.
- Subjects might react to mid-tone hummed speech by waiting for the pause. Whispered stimuli did not differ/have slightly faster decision times.

Discussion

- Intonation is a sufficient cue to project TRPs when the utterance ends in high or low pitch.
- We found no evidence that pitch is not a redundant cue for TRP projection in normal speech.
- However, our whispered stimuli might still contain intonational components (e.g. duration, loudness, spectro-temporal properties)

Latest work: Pragmatic annotation

All utterances were labeled in terms of their discourse function such as:

new subject or change of subject continuation: current subject is continued elicits a respons from the other speaker respons to an elicitation arounding act of formulaic utterance elements from earlier utterances are repeated, without new information jokes and utterances about subject matter that don't add new information not subject-related, but informative remark no information, but marks that speaker wants to say more

Probability a	nd distribut	tion of re	esp. ov	er pragm	atic cat	tegories
function	stim type	N.	resp.	prob.	avg.	stddev.
				of resp.	delay	delay
beginning	Orig.	1102	540	.49	.130	.60
	Hum.	764	469	.61	.061	.65
	Whisp.	349	115	.33	.102	.55
continuation	Orig.	13152	7141	.54	.104	.50
	Hum.	8585	4768	.56	.105	.57
	Whisp.	4513	2072	.46	.157	.49
elicitation	Orig.	2846	1190	.42	.130	.47
	Hum.	1957	1050	.54	.129	.54
	Whisp.	1031	372	.36	.145	.51
reaction	Orig.	2175	977	.45	.170	.42
	Hum.	1484	734	.49	.204	.49
	Whisp.	784	313	.40	.160	.43
formula	Orig.	8780	2418	.28	.104	.40
	Hum.	6052	2110	.35	.344	.41
	Whisp.	3154	797	.25	.197	.39
repetition	Orig.	536	256	.48	.064	.40
	Hum.	358	171	.48	.146	.47
	Whisn	170	63	35	135	<i>4</i> 7

Notes:

- NB: No content recognisable in Hummed condition, so any effects here can't be attributed to function
- Slow responses to formulaic utterances in *Hummed* condition may be caused by shortness of the signal.
- Tentative result: repetitions elicit significantly faster responses.

Future work

- Manipulated other modalities, eg. pauses, and loudness.
- Add visual modality (video recordings).

