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Preface 

 

 

As an electronics engineer having worked at the language department of the University 

of Amsterdam for many years, I assisted researchers and students in many aspects of 

processing of sound, such as various signal analysis methods and automation of analysis 

and manipulation handling procedures. A great deal of their needs for assistance fell 

into the category spectral analysis, a field which most language researchers experienced 

as ‘difficult’. Generally, people with a background in linguistics have not had much 

training in mathematical and technical subjects. Sometimes, in the planning of a 

research, the focus might be shifted so as to avoid signal analysis techniques. Often, 

those analyses that could not be avoided will be carried out applying ´blindly´ the 

default parameter settings of a suitable program like “Praat” [2]. These may work 

perfectly in many cases but will need to be adapted when specific sound material is 

analyzed. Also, adaptations need to be made depending on the aim of the analysis. This 

lack of technical background might also cause serious errors in the interpretation of the 

results of the analyses. Language researchers from other countries than my own (The 

Netherlands) have told me similar stories, so it seems that this problem might be quite 

widespread. 

 

There are numerous books about signal analysis, varying from simple introductions to 

highly advanced mathematical works. Why then this book when there are so many 

already? It seems that the books available are either highly theoretical and technical and 

thus only suited for people skilled in mathematics, or oversimplified so that the 

background is not explained clearly and cannot be understood sufficiently. This applies 

especially to researchers in the humanities who have not had an extensive training in 

mathematics, which limits a person’s ability to understand most books on signal 

analysis. In addition, many books concentrate solely on digital signal processing and 

microprocessor applications, which would be a too limited area for the audience for 

which this book is intended. 

 

In this book, therefore, I will try to explain the principles of manipulations, analyses 

and productions of sound that researchers who work in this area generally come across, 

rather than to try to cover all aspects of signal processing. The tools that will be used 

are first of all, the reader’s own common sense, and secondly, the versatile free program 

“Praat” (see the Introduction for accessing and using Praat). The mathematics used 

here hardly exceed secondary school levels. Possibly, this kind of simplification might 

be at odds with the mathematical correctness now and then. However, because the 

purpose of this book is getting insight in the signal processing mechanisms, that is what 

should have the highest priority. As long as the mathematical incorrectness does not 

influence the general truth of the underlying principles, the complications of a strictly 

mathematical approach are avoided in favor of clarity. 
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The book focuses on speech research. However, the basic principles of analysis used 

are valid for all kinds of sound analyses, or more generally, ‘low frequency’ waves 

analysis. Therefore, sounds ranging from animal sounds, musical instruments, singing 

voices, machine noise and heart beats to earth quakes, can be analyzed using the same 

principles. This is provided that the microphone or transducer used, and the sound input 

of the computer and other electronics used are able to process the specific signals 

adequately, and that the above-mentioned parameter settings are adapted to the specific 

properties of these sounds.  
 

Some properties of speech sounds and musical sounds are dealt with in some detail in 

special sections. 
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Introduction 

 

 

This book consists of two main parts: 

 

Part A deals with the basic principles of the analysis and manipulation of sound. The 

focus is on explanation through logical reasoning. Why do signals behave as they do, 

and what are the consequences of the various methods of analysis and manipulation? 

This part of the book tries to answer your fundamental questions about many aspects 

of signal processing. This is the theoretical part of the book, but all of it is embedded in 

a practical context. 

 

Generally, for most studies in exact sciences a next step in learning a subject can only 

be taken when the earlier steps are understood: the new step is built on those that came 

before. Of course, it would have been possible to organize the book in such a way that 

the reader might choose a topic at random. However, the book would then have ended 

up containing a huge number of references to other parts. Instead, I chose the first 

option: new sections are based on the knowledge of the earlier ones. Nevertheless, many 

references to an earlier section are included.  

 

The section on discrete time signal processing (aspects of sampling signals for 

computer processing) is postponed to the end of part A. Although most books on signal 

processing deal with sampled signals from the beginning, I will discuss the properties 

and analysis of the analog signals prior to the discretization, in order to avoid confusion 

of the sampling effects with the inherent signal's properties. 

 

Part B contains practical notes that are important for knowing how to make good sound 

recordings, avoiding signal distortions or background noise effects, choice of 

equipment, avoiding mistakes, etc. An important ingredient of this part B is the 

explanation of the effects of parameter settings in programs for the most commonly 

used signal transforms, like “Praat”. Using the wrong settings for analyses can 

sometimes lead to inaccurate results! An especially tricky part is that the graphs may 

look accurate even when the output could still be misleading. It is important to know 

how to measure correctly. 

 

Part B relies heavily on the information given in Part A and I would advise you to read 

Part A first. If you know enough already about basic signal processing principles you 

could skip this part, but, why miss all the fun? 

Finally, in the Appendices a slightly more mathematical approach of some signal 

transforms and representations is presented. Here, the mathematics used is not very 

complicated but of course there are a few formulas there! For people with allergic 
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reactions to formulas with e.g. integrals there is no need to suffer: they can skip them. 

Part A without appendices offers sufficient information to understand the basic 

principles. For other people the appendices may serve as a step between the 

popularizing part of this book and other more mathematical books on the subject. These 

appendices may even offer you some more insights in the 'nature' of this sort of 

mathematics.  

The program "Praat" 

 

I would strongly advise you to download, install and use the free program “Praat” [2] 

from the site [www.fon.hum.uva.nl/praat] with which you can see and hear the effects 

described in the book. To run the demos in this book I made scripts for this program. 

The scripts are small programs that contain commands for Praat, and programming 

features, which make it possible to show effects of signal processing mechanisms and 

to play signals automatically.  

 

The scripts can be found in the self-extracting file “scriptsIntoSound.exe” on the 

internet pages [www.fon.hum.uva.nl/wempe] or [www.auditon.nl]. It is highly 

probable that the demos in the book will work as well with Praat versions that are newer 

than the one I used for testing, because the program is always kept downward-

compatible. Instead of downloading the newest version of the program from the Praat 

site mentioned in the reference you could download the version from one of my pages 

to ensure that the demos and descriptions in the book apply to the same Praat version 

that I used to test all scripts. 

 

The installation of Praat on your computer is very simple. The file 

“Praatxxxx_winyy.zip” (x for version number and y for 32 or 64 bit) produces only one 

executable file (Praat.exe). You can put it on your desktop or anywhere else on your 

hard disk.  

 

Praat is a versatile program for signal analysis. Originally designed as a basic speech 

analysis tool, it has been developed to a universal signal research platform where all 

kinds of analyses and manipulations can be made on signals, with the flexibility to 

adjust all kinds of parameters. The possibility to produce high quality graphs and the 

intuitive script language make this program tailor-made for researchers in this field. 

 

There is no need to learn using Praat for running the demos in this book. It is used only 

as a tool together with the demo scripts. The basics for getting the scripts ready to run 

will be explained, however. 

 

There are Praat versions for Windows, Mac and Linux but the demo scripts for this 

book are only tested in the Windows version. Possibly, for the other platforms some 

minor modifications of the scripts may be needed, and if you need help with that, there 

is a Praat user group (http://uk.groups.yahoo.com/group/praat-users/) where you can 
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ask questions about scripting in general. There are some beginner’s manuals 

downloadable from Praat's home page (http://www.fon.hum.uva.nl/praat). 

 

You do not need to understand the contents of the demo scripts. For people who are 

interested in how the scripts work: although the structures are quite simple and are 

clarified by explanatory comments, the scripts sometimes contain lines that will not be 

clear during the stage the reader has reached at the moment the demo is being used. 

That will not cause any problems as the purpose of the demos is the demonstration of 

the effects, not an explanation of the way the scripts work. (Nevertheless, it can be 

interesting to make your own scripts, of course!) 

 

For listening to the demo sounds you should connect loudspeakers or headphones to 

your computer's sound output. For laptops or tablets I would advise to use 

headphones/earphones or external speakers instead of the built-in speakers because of 

the highly limited frequency range of these tiny built-in speakers. Make sure that the 

sound mixer (Windows Volume Control) or your special sound software is adjusted for 

playing wave (.wav) sounds. Adjust the (Windows) Volume Control and Wave sliders 

to proper levels to avoid distortion, and be sure that eventual corresponding mute boxes 

are unmarked. 

 

For using the demos, it is convenient to alter some of Praat's default settings, to avoid 

confusion by displaying more than what you are working on at that moment. This is 

taken care of in the special script for this purpose, called INIT.script. These new settings 

are preserved by Praat so that there is no need to adjust the settings after the next time 

you start the program. When the settings happen to be accidentally overruled, you could 

run the INIT script again so that the preferred settings are restored. The script also 

ensures the proper sound playing settings for all demo scripts (apart from the Windows 

settings mentioned above: they depend on the hardware used). 

 

How to run scripts in Praat 

 

If you have not downloaded and unpacked the scripts yet, please do it now and put them 

either in a new directory, or in the directory where Praat can be found. It is better not 

to use the desktop for all these scripts to avoid cluttering your screen with icons. When 

you have done that, run the Praat program. You will see two windows. The left window 

is called ‘Praat Objects’; the right window is called ‘Praat Picture’. In the Object 

window under ‘Praat’ select ‘Open Praat script...’. browse to the directory where you 

put all the demo scripts, select the demo script mentioned in the book and then click 

’Open’. In the window that appears you will see the text of the script. Under its menu 

‘Run’ select ‘Run Ctrl-R’.  

 

This is the way to run all demo scripts. When in the book the text DEMOx.x appears 

(x.x stands for an index number) you should open the Praat script in the way described 
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above and run it. Sometimes a window appears wherein you can enter some parameter 

values mentioned in the text or continue after the script has interrupted itself: many 

scripts produce a window where the user can select options or give data. When you no 

longer need a certain script, you can close its window, but you can leave it alone as 

well: the program does not limit the number of scripts in memory. When the script has 

generated one or more windows you can close them in the normal way (by clicking the 

X in their upper right corner). However, you should not close the window named "Praat 

picture": if you want to get rid of the pictures drawn earlier you can erase them by 

selecting ‘Erase all’ under the ‘Edit’ menu of the ‘Praat picture’ window. 

 

(The sound editor window in Praat is displayed slightly different from its default 

settings. The INIT script will automatically adjust the settings needed for our purposes. 

It has to be run only once.)  

 

The scripts will produce certain objects in the Object window. When you quit Praat, the 

program will ask whether or not you want to save them. As the scripts produce the 

necessary objects anew when you run them there is no need to save them. 

 

All this sounds more complicated than it is: during your actual Praat sessions you will 

find that it is all very straightforward. 
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Part A. Understanding basic signal analysis 

1. The nature of sound 

 

 

Most readers of this book probably know that sound in air consists of quickly varying 

local alterations of air pressure. All sound sources, i.e. all things or beings that make 

sound, do that by vibrating mechanical parts that move the air back and forth locally 

(or up and down or left and right or a combination of directions). These air movements 

cause local air pressure alterations which push and pull their neighboring areas and they 

push and pull the next areas in turn. In this way, waves of locally vibrating air travel in 

all directions, away from the sound source. There is a small delay before neighboring 

areas start to move: the propagation of sound in air takes time. At room temperature 

this speed is 340 m/s. Therefore, the sound wave propagates through air but the air 

molecules themselves remain where they are. Think about the waves that occur when 

you throw a stone in a pond: the waves travel along the surface of the water away from 

the position where the stone hit the water (the source) but the duck nearby moves only 

up and down. It remains at the same distance from the source. Of course, in air the 

waves travel in all three dimensions instead of two, as is the case with water waves. 

Apart from air, sound can be propagated in all kinds of media: gases, liquids and solid 

matter. The propagation velocity depends on both the compressibility and the density 

of the medium. The higher the compressibility ("elasticity") the lower the propagation 

velocity will be. Also, the higher the density, the lower the propagation velocity will 

be. For helium gas, for example, the compressibility is quite the same as for air but the 

density is lower so that the propagation velocity is higher. For metal, the density is 

much higher than that of air but the compressibility is very, very much lower than that 

of air so that, as a result, the propagation velocity of sound in metal is about 5000 m/s 

which is 15 times the velocity in air. The propagation velocity is practically not 

dependent on wind; for sound propagation in air, the air is needed as a medium; the 

type of medium is not changed by wind, and the moving of the medium is much slower 

than the velocity of sound. 

 

The spreading of the sound in all directions causes the sound intensity, which is 

expressed as power per unit of surface area, to decrease as the distance from the source 

increases: the spreading loss. If we think of a sphere with a certain radius r1 around the 

sound source, all sound power is divided equally over the entire surface of the sphere 

so that everywhere on the sphere's surface the sound intensity has the same value.  

 

The surface of the sphere with a radius r1 is equal to 4𝜋𝑟1
2. If we alter the distance to r2 

the total surface is 4𝜋𝑟2
2. The intensity anywhere on the surface will have changed 

inversely proportional to the ratio of the squares of the radii. Consequently, if we define 
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one distance from the sound source as d1 and one other distance as d2, and the intensity 

found at distance d1 as I1 and the intensity at distance d2 as I2, we can write it as the 

following formula: 

 
𝐼2

𝐼1
=

𝑑1
2

𝑑2
2 (1.1) 

This formula is only valid for point sources which means that, theoretically, the sound 

source is supposed to be concentrated in one point. In practice, many sound sources can 

be considered as point sources if the size of the sound source is small compared to the 

measuring distances.  

 

Another restriction on the validity of the formula is that the sound waves occur in the 

free field which means that there are no reflections by walls or furniture: all sound 

waves travel away from the sound source unhindered1. In a room the sound loss depends 

highly on the sound reflection, absorption and dimensions of the room. (For example, 

in a typical office room without special acoustic adaptations the intensity at 2 meters 

from the source can be about 2 or 3 times as high as the intensity of the same source in 

the free field at the same distance, due to the reflections in the room. When the 

microphone is placed near a wall this factor must roughly be doubled, caused by 

‘standing wave’ effects, which will be discussed later.) 

 

Naturally, when the sound waves travel away from the source there is some loss of 

energy during the takeover of the movements by adjacent parts of air: the atmospheric 

absorption. This type of sound loss must be distinguished from the spreading loss as 

described above. This atmospheric absorption is dependent on the viscosity (toughness) 

of the molecular structure of the air. Generally, this energy loss increases when the 

sound contains higher tones (or frequencies, which is explained in section 3.). This type 

of energy loss is only important in cases of high distances: higher than about 1 km or 

so. In cases of shorter distances, the formula 1.1 will suffice. 

 

The intensity being a measure of power per unit of area, this is not what our 

microphones register. Inside the microphone its diaphragm is activated by the sound 

pressure (p). The sound pressure is commonly called SPL (Sound Pressure Level) and 

must be seen as a force acting on a surface. It is expressed in pascal. 1 pascal is defined 

as 1 Newton per square meter. This SPL is what our microphones transform into 

proportional electrical voltages. Do not mix up the sound pressure with the intensity: 

pressure is force per unit of surface area, measured in Newtons per square meter, and 

intensity is power per unit of surface area, measured in Watts per square meter. The 

intensity is the acoustic power that the sound source emits through the unit of area; the 

pressure is the effect of this emission. This means that the intensity is proportional to 

 
1  The term free field refers to a theoretical space without sound reflections. In practice, even out-of-

doors, there always will be some sound reflections. 
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the SPL squared. In the box called OHM's LAW this relation is explained in a bit more 

detail.  

 

Now our formula 1.1 can be rewritten for SPL values instead of intensity values: 

 
𝑝2
2

𝑝1
2 =

𝑑1
2

𝑑2
2  or  

𝑝2

𝑝1
=

𝑑1

𝑑2
 (1.2) 

If there is more than one sound source active at the same time, the air pressure at a 

particular position will be the result of all wave interactions. Therefore, at each 

particular point in time the voltage level of the microphone is proportional to the 

resulting air pressure level of all sound wave interactions at that point in time.  

 

Our ear drums are put in motion in exactly the same way. Our brains are able to 

distinguish different sounds quite well from the resulting movements of the eardrums 

caused by different sound waves. Using both ears we can even hear the directions where 

the sounds come from, based on the little time delay differences of the sound wave 

paths between source and different ears, the phase difference. Likewise, the diaphragms 

of two microphones placed in similar positions as our ears, produce the complete 

information that our ears receive. Listening through earphones to recordings made in 

this manner gives the realistic sensation as if you are present in the room in which the 

sound was produced (artificial head stereophony). Even the awareness of sounds 

coming from behind or above is preserved. The reason why I am emphasizing this 

subject is that there are people who think that for more realistic spatial sound properties 

OHM’S LAW 

 

The relation between pressure and intensity can be explained by using an analogy in electricity. You 

have voltage (the 230 volts of the mains outlet, for instance), and current (the amperes that flow 

through, say, a light bulb). If no lamp is connected with the outlet there is no current but there is a 

voltage. When a lamp is connected, the amount of current depends on the lamp type: a 100 Watt 

lamp causes a higher current than a 40 Watt lamp. The difference between the lamp types is 

determined by their resistance. Ohm’s law defines the simple relation: the current is the voltage 

divided by the resistance ( I = V/R ). The resistance is a property of the lamp and has nothing to do 

with the outlet voltage. Consequently, R = V/I and is a constant for a particular lamp which implies 

that, for example, doubling the voltage causes also doubling of the current. 

Now, the amount of light that the lamp produces is proportional to the power (P, in Watts), which 

is the voltage multiplied with the current (P = VxI ). Substituting I by V/R gives: P = V2/R. The power 

is proportional to the square of the voltage! 

Accordingly, this can be applied to the subject of sound. Just as, for a certain lamp, the voltage 

causes a proportional current, the acoustical pressure level causes a proportional particle velocity, 

for a certain medium. ‘Ohm’s law’ then is: v = p/z, where v is the particle velocity, p the pressure 

level (SPL) and z the acoustic impedance of the medium (in analogy with current, voltage and 

resistance, respectively). Here, the power is called intensity (in Watts/m2) and can be expressed as: 

Int = vp = p2/z. The intensity is proportional to the square of the pressure! 

For z the more general term impedance is used instead of resistance because of the possible 

frequency dependent phase shift between p and v. But that's another story! 
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you need more microphones, which obviously is a mistake. On the contrary, simply 

mixing more than two microphone signals into the stereo signal creates the opposite 

effect. Sometimes certain small signal delays are applied to the extra channels to get 

some artificial spatial sensation (‘surround sound’) but the real direction information is 

then disturbed. 

 

In the practical part of the book we will go into the acoustic implications of the sound 

recording in some more detail, when we deal with the strategy to use microphones in 

rooms. 
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2. Decibel 

 

The impression of sound intensity (‘volume’) is not linear: when the intensity of a 

sound, for example, doubles in magnitude, the impression is a certain increase of the 

volume. When the intensity doubles again, the same increasing step is perceived, and 

so on. Each doubling of the intensity we perceive as the same increase. Thus, the 

impression of the intensity behaves as if our hearing works logarithmically. This 

phenomenon should not be very surprising. Generally, our perception behaves not in 

an absolute but in a relative way. If you lift an object that weighs 1 kg, put it down and 

then lift an object of 1.5 kg, you will have some impression of the difference. If you do 

the same with objects of, say, 4 kg and 4.5 kg, the impression of the difference is much 

smaller. Only when the second set of objects weigh 4 kg and 6 kg respectively, the 

impression of the difference is the same compared with the first set. Apparently, for 

equal impressions of differences, the percentage of increase has to be constant. This 

general property of our perception is expressed by Weber’s law: 

 
∆𝐼

𝐼
= 𝐶 (2.1) 

where I is the physical value, ∆𝐼 the change of value which causes a certain impression 

and 𝐶 a constant. Of course, the formula does not hold for very low (and very high) ∆𝐼 
values. If the difference of the values is so small that it has reached the discrimination 

threshold or the Just Notable Difference (JND), the constant C becomes CW: the 

Weber’s fraction. Obviously, this JND too is a constant percentage of the absolute 

physical values.  

  

For the representation of sound intensity, the logarithmic measuring unit decibel (dB) 

is used. In principle, it is nothing more than an exponential measuring unit for a ratio 

of two quantities. Its name implies that it is derived from the bel (named after Alexander 

Graham Bell) and, indeed, the decibel is 0.1 bel. One bel simply means a factor . 

Two bels mean  and so on. Likewise: -1 bel . Then an increase by 1 

decibel , which is about a factor 1.26 (or 26 % increase). The other way goes 

accordingly: for example, a factor 1000 means ; its log is 3 which is 30 decibels. A 

factor 1/1000 means  which has a log of -3 which is -30 decibels. In general:  

 #𝑑𝐵 = 10log⁡(𝐼𝑁𝑇𝑟𝑎𝑡𝑖𝑜) (2.2) 

 𝐼𝑁𝑇𝑟𝑎𝑡𝑖𝑜 = 10#𝑑𝐵/10 (2.3) 

Now, this decibel is NOT the dB that is used for the expression of sound pressure! It is 

the norm to use the dB for the acoustical intensity which is the SPL squared. The 

acoustic intensity is the power per unit of area, and the SPL is the force per unit of area 

(see the box OHM'S LAW). As an example, when the SPL is raised by a factor 3, the 

intensity is raised by a factor 9. That implies that we have to multiply the number of 

dBs by two in formula 2.2 when dealing with SPLs because the dBs refer to intensity! 

In this way, the general formulas for SPL dBs become: 

110
210 1.010 1 == −

1.010=
310

310−
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 #𝑑𝐵 = 20log⁡(𝑆𝑃𝐿𝑟𝑎𝑡𝑖𝑜) (2.4) 

 𝑆𝑃𝐿𝑟𝑎𝑡𝑖𝑜 = 10#𝑑𝐵/20 (2.5) 

For example, when the SPL ratio doubles, the number of dBs is increased by 20 log (2) 

which is about 6 dB, as log (2) = 0.30103. 

So, when we want to express one intensity value with respect to a second intensity value, 

the formulas 2.2 and 2.3 should be used. When we want to express one sound pressure 

value with respect to a second sound pressure value, the formulas 2.4 and 2.5 should 

be used. This fact is emphasized because it seems that many people are unsure when to 

use the factor 10 and when the factor 20. It stems from the (historical) decision to 

interpret sound pressure in terms of the effect it has on the intensity. (The same applies 

to electrical voltages: the voltage ratio is also expressed in terms of the effect on the 

electrical power.) 

Now what, for example, is meant by “the sound level is 80 dB”? As the dBs imply a 

ratio of SPL levels why are they used to define an absolute sound level? In other words, 

what level is 0 dB? The answer is that the average lowest hearing threshold is used as 

a reference. The weakest sound that is just noticeable for the average person is 20 μPa 

(micropascal: a millionth of a pascal) and defined as 0 dB. So, according to formula 2.5, 

80 dB means a factor 10(80/20) = 10000. The SPL then is 10000 x 0.00002 Pa = 0.2 Pa. 

For indication of this reference, dBSPL is sometimes used.  

 

The strongest SPL that people can bear is about 120 dB which corresponds to 20 Pa. 

Levels like that cause pain and can damage the nerve cells of the inner ear. We may 

conclude from this that our ears can manage a pressure range ratio of 10
6
 = 1 million! 

As you may know, the atmospheric air pressure is about 10
5 Pa. So, the atmospheric 

air pressure is 105/20 = 5000 times as high as the highest sound pressure we can bear! 

Luckily this atmospheric pressure is present at both sides of our eardrums... 

 

Another measuring unit of sound levels is quite common: the dBA. Our ear’s sensitivity 

is dependent on frequency. An attempt to take this into account is the application of a 

generalized frequency dependent function: the ‘A-weighting’ of sound. The dBA values 

are adapted to this standardized frequency dependence. In Part B we will learn more 

about this method (and its limitations) to compensate for our ear’s properties. 

 

A consequence of logarithmic measuring is that if there is no sound at all (zero SPL) 

this cannot be expressed on a log scale. In that case the SPLratio is 0/20 μPa which is 

0. And log (0) amounts to minus infinity. Therefore, please do not make the mistake 

that zero sound pressure corresponds with 0 dB! In practice, in our atmosphere there is 

always sound with some level, no matter how small, so that it always can be expressed 

in dB.   
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3. Waveform, frequency, spectrum 

 

When you give a swing a single push from its position at rest, it moves forward and 

backward in a smooth, periodical way. It goes on like that, while the greatest deviations 

from its rest position slowly decrease until it finally comes to rest again. Were it not for 

the air resistance and the friction of the bending rope or the hinges, the movement would 

go on forever. In that case it would move exactly like a sine wave (provided that the 

deviations remain small). This type of movement forms the most basic periodic 

“vibration” there is. When a graph is plotted of the swing movement as a function of 

time, a graph like the example in fig. 3.1 will emerge, called the waveform. The 

maximum absolute value of this sine function is the amplitude.  

If the air pressure is changing according to this sine waveform (although at a much 

faster pace), a so-called pure tone can be heard. Run DEMO3.1.script in the program 

Praat to play an example of a tone and displaying its graph. (Switch on your sound 

playing device or put on your headphones.)  

 

As already mentioned, the signal which the microphone registers is the SPL of the 

sound. The vertical amplitude axis, therefore, refers to the SPL. 

 

Fig. 3.2. Waveform of 18 ms of a sine wave. 
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Fig. 3.1. Movement of a swing as a function of time. 
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In this example there are 400 complete cycles per second. Its frequency is 400 hertz. 

This can be read from the waveform as follows: the time of one complete “cycle” (= 

the time between two similar positions in the waveform, let's say two corresponding 

“zero crossings”), is 2.5 milliseconds (ms), so the number of cycles per second is 

1/0.0025 or 1000/2.5 which is 400 hertz. (See also Fig. 3.2.)  

 

In section 1 the propagation of sound in air was mentioned, being 340 m/s. So, one 

complete period of this 400 Hz tone spreads out in space over a length of 0.0025 x 

340 m = 85 cm. Therefore, a tone of 400 Hz has a wavelength of 85 cm. Because our 

ears remain in the same position, we do not perceive these wavelengths, only the air 

pressure alterations. (In fact, if we would move towards the sound source, this would 

increase the speed with which the pressure alterations reach our ears and this increase 

of the propagation speed simulates a shorter wavelength and, therefore, a higher tone. 

The reverse, if we would move away from the sound source, the tone would be heard 

at a lower frequency. This is the well-known doppler effect.) The relation between 

wavelength, propagation speed and frequency is expressed by the formula: 

 𝜆 =
𝑐

𝑓
 (3.1) 

where λ is the wavelength, c the propagation speed and f the frequency. 

 

It’s a boring sound, isn’t it? Let’s make it a bit more interesting. Running DEMO3.2 

will play a chord that is generated by the script but it could also have been produced by 

some electronic musical instrument. You see that its waveform looks quite complicated 

already (see also fig. 3.3). And yet it consists of only 3 pure tones added together. It is 

almost impossible to distinguish these individual sine waves from its waveform by 

looking at it. However, we can display this sound in a different way: we can create a 

graph that displays the amplitudes of the individual pure tones as a function of 

frequency. 

 

Fig. 3.3. Waveform of three added sine waves. 
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Fig. 3.4 shows this graph which is called spectrum, and it looks extremely simple. 

Basically, this spectrum consists of only three points, the horizontal position 

representing the frequency and the vertical position the amplitude. It is customary to 

draw vertical lines from each point to the horizontal axis: the spectral lines.  
 

The vertical axis is scaled in dBs, which is used normally in spectra because the auditory 

impression of the intensity is logarithmic (see section 2). Another reason is that weak 

but audible components could be invisible if a linear scale was used. For example, the 

spectral line of a component that is 40 dB lower than the maximum would have a length 

of 1/100th of this maximum which is very near to zero on a linear scale. On a 

logarithmic scale with a customary range of, say, 80 dB this component reaches half of 

the maximum height in the graph! 

 

The 0-dB reference in Praat spectra is a (one second) sound at the level of our hearing 

threshold (20 μP SPL). (Although these values suggest a volume calibration, you must 

not rely on it because the volume of a sound played by the computer depends 

completely on the positions of the computer volume adjustment, the sound card 

amplification, the speaker or headphone properties, etc.) It is simply impossible to 

calibrate the level because of all these unknown variables. (See also the Praat manual 

about SPL calibration.) The relative values, however, can be read perfectly well from 

the graphs. 

 
 

 

Fig. 3.4. Spectrum of three added sine waves. 
 

Of course, we could construct this spectrum directly from our knowledge of the signal’s 

properties: it consists of three sine waves with equal amplitudes. The Praat program, 

however, did not ‘know’ this. Nevertheless, it can accurately find the three sine 

components one way or another. Somehow it analyses the waveform and produces the 

sine wave components. The explanation of how this is made possible comprises the 

main part of the book. 
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For now, we can conclude that the waveform is the way the sound is represented in the 

time domain, and the spectrum is the way the sound is represented in the frequency 

domain, as is determined by the nature of the horizontal axes. 

 

A commonly used name is amplitude spectrum, as it refers to the amplitudes of the 

frequency components. Strictly speaking, in the program Praat this is not correct, as 

this program, like many signal analysis programs, displays density spectra where the 

dB values depend on the time length. For the moment we would not bother about the 

difference as here it is only a matter of the way of scaling the vertical axis. In section 

15 about noise the difference is explained. In Part B we will look at Praat’s practical 

spectrum properties in some more detail. 

 

It is also quite common to use the term power spectrum. Although we mean SPLs in 

the time and frequency representations of sound, the values in dB refer to the power or 

intensity, which is the amplitude squared, as you will remember from section 2. On a 

logarithmic scale, therefore, the values are doubled. Naturally, the shapes of the spectra 

remain unaltered when only the numbers along the axis are doubled.  
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4. Fourier series 

 

When we look at the waveform of DEMO3.2 (fig. 3.3) we can see on the scaled time 

axis that a specific pattern is repeated each 5 ms during the entire signal. No matter 

where you define the start of this 5 ms section, the pattern is always repeated after 5 

ms. In other words: this repetition period occurs 200 times per second. Therefore, the 

repetition has a frequency of 200 Hz (hertz), which is called the fundamental 

frequency. The relation between fundamental frequency and repeated period is 

represented by this simple formula: 

 𝐹0 =
1

𝑇0
 (4.1) 

where F0 and T0 represent the fundamental frequency and the period, respectively. 

Frequency can be expressed in Hz, or cycles per second, which speaks for itself.  

 

One repetition period of the waveform contains all information about this signal as all 

periods are the same. The complete data of all 3 sine waves are present in each single 

period. Now, a French mathematician and physicist, Jean Baptiste Joseph Fourier 

(1768-1830) proved that all periodic signals, i.e. signals that consist of repetitive parts 

of constant lengths and forms, can be represented by just combinations of sine waves 

of specific amplitudes and with frequencies that are multiples only of this fundamental 

frequency (F0), including F0 itself. The general form of a periodic signal is: 

 𝑥(𝑡) = 𝑥(𝑡 + 𝑇) (4.2) 

Here x(t) stands for the varying sound amplitude as a function of time. We can conclude 

that any periodic signal can be represented by a set of sine waves of specific amplitudes 

and with frequencies of F0, 2F0, 3F0, 4F0, etc. In the example above, we have the 

following frequency components or harmonics: 

 

 1st harmonic: F0: amplitude: 0  frequency: 200 Hz 

 2nd harmonic: 2F0: amplitude: 1/3  frequency: 400 Hz 

 3rd harmonic: 3F0: amplitude: 0  frequency: 600 Hz 

 4th harmonic: 4F0: amplitude: 1/3  frequency: 800 Hz 

5th harmonic: 5F0: amplitude: 1/3  frequency: 1000 Hz 

next multiples all have amplitude 0. 

 

Obviously, this is a simple example. Nevertheless, it teaches us that the amplitude of 

the frequency F0 itself can be zero whereas the corresponding period (here 5 ms) is 

clearly present. The fundamental frequency only depends on the length of the repeated 

part which is determined by the greatest common divisor of the frequency components! 

Only then the frequency components will be multiples of a common fundamental 

frequency. In the part B section on frequency range it will also be shown that even for 

a sound with a clearly audible fundamental frequency this frequency component need 

not necessarily be present in the spectrum!  
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Now, let’s add some other sine wave components together. DEMO4.1 asks you to type 

the number of harmonics to generate. Try the default (already filled-in) value first.  

 

A part of the resulting waveform is displayed and it looks like a triangle wave. (See 

also fig. 4.1.) The corresponding spectrum is displayed as well which shows the 10 

harmonics. (You will see that there are only odd-numbered harmonics; the even 

harmonics are absent. This is always the case when the signal is symmetrical in the 

 
 
Fig. 4.1. Triangle waveform approximation with 10 odd harmonics. 
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Fig. 4.2. Waveform from 10 odd harmonics with equal amplitude. 
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sense that the lower halves of the waveform are mirror images of the upper halves. 

Later, in section 6, we will learn more about symmetry properties.) 

 

Of course, this triangular wave example is a theoretical one: in practice the waveforms 

are usually much smoother. This example is merely used for analytical purposes. 

 

The spectrum shows that the demo script is designed in such a way that the amplitude 

of the harmonics decreases with increasing frequency. This roll-off is very ‘natural’: 

almost all waveforms of natural sounds can be synthesized with sets of harmonics that 

have some roll-off. As a contrast see fig. 4.2 for the waveform which arises when all 

10 harmonics of the triangle example of fig. 4.1 have equal amplitude. The relatively 

shallow parts of the triangle have disappeared which indicates to the effect that the high 

frequency components are ‘emphasized’ at the cost of the low frequency components. 

 

If you run the script again with 3 harmonics instead of 10, you will see that the triangle 

waveform is no longer perfect. You can try any number of harmonics. (Obviously, if 

you run the script with only one harmonic a perfect sine wave will emerge.) 

 

Now run DEMO4.2 to approximate a sawtooth waveform (see also fig. 4.3.). You may 

experiment with different numbers of harmonics again. What you see is that the 

required number of harmonics to approximate the waveforms with some degree of 

 
 
Fig. 4.3. Sawtooth waveform approximation with 40 harmonics. 
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accuracy is higher for the sawtooth wave than for the triangular wave (even when you 

include in your count the missing even harmonics of the triangular wave). 

 

Theoretically, for signals with sudden changes or discontinuities in the waveform, we 

would need an infinite number of harmonics to acquire the perfect waveform. The 

sawtooth wave has a very big step in the waveform which needs strong high harmonics 

compared with those for the triangular wave. In practice, these waveforms do not exist 

in perfect form: their discontinuities always take some time which means that they are 

not pure mathematical discontinuities. Nevertheless, in practice it is always possible to 

approximate the practical waveform almost perfectly with a limited number of 

harmonics. 

 

Fig. 4.4. Waveform of steady part of a violin sound, and its spectrum. 

 

In these examples we have applied a Fourier synthesis. Let’s do it the other way around. 

In DEMO4.3 we have a constant steady tone of a violin (see also fig. 4.4). The repeated 

part (T0) is about 2.56 ms (milliseconds) so the F0 is 390 Hz. 

 

After you select Continue its spectrum is displayed (also in fig. 4.4). You will see that 

many multiples of F0 exist and... in between there is nothing! Theoretically, all 

frequencies between the spectral lines are zero. (See the box NO SILENCE ON dB SCALE 

about the consequences of the logarithmic scale.) 

 

 

0

0 0.005 0.01 0.015 0.02

Time (s)

20

40

60

80

0 2000 4000 6000 8000 104

Frequency (Hz)

dB



20 

 

At the high frequency end of 

the spectrum the amplitudes of 

the harmonics decrease and 

gradually approach negligible 

values. The fact that the 

spectrum is empty between the 

spectral lines may seem 

strange and some people 

attribute this to the Fourier 

math peculiarities. However, it 

can easily be seen that this is a 

fundamental property: when 

the frequency of a sine 

component is a multiple of the 

fundamental frequency, its 

contribution to each period of 

the waveform is exactly the 

same. But, in the case of a sine 

frequency that is, for example, 2.5 F0, its contribution to adjacent periods of the 

waveform is different: the phase of the sine component is not the same for each 

waveform period. (In this case it takes 2 periods of the waveform to reach the original 

phase; when the sine component is 2.3 F0, for example, it takes 10 waveform periods 

before the phase has returned again to its initial value.)  

 

Therefore, the requirement for a sine component to have the same contribution to all 

periods of the waveform implies that it must have a frequency that is a multiple of the 

fundamental frequency.  

 

All these measured frequency components of a specific periodic signal together form 

its Fourier analysis. It’s the opposite of Fourier synthesis. To be more precise, the 

NO SILENCE ON dB SCALE 

 

It is not possible to properly display zero level on a 

logarithmic scale, like the dB scale. This is caused by the 

fact that the power of the logarithmic base number (say 10) 

must be minus infinity to get zero: 0 = 10-∞. When generating 

signals with a computer program, the zero values (absent 

harmonics, for example), could jump to minus 300 dB or so, 

depending on the precision of the numbers used in your 

computer. Therefore, the dB range displayed in practice one 

mostly limits to 60 or 90 dB. In “Praat” you can adjust this 

range to any value. To see what is present at these extreme 

low levels you could run DEMO4.3 again and at “dB range” 

you can temporarily set it to 400 dB for example. Now you 

see something emerge like a “noise floor”. It is caused by the 

limited number precision in the computer. In practice this is 

not relevant: ratios of 100 dB or so are more than enough as 

this covers already an intensity ratio of 1 to 100000. 

ABOUT PERIODICITY 

 

What if we add, say, a sine wave of 100 Hz and a sine wave of 103 Hz? Obviously, the fundamental 

frequency is 1 Hz (not 3 Hz!). So, strictly speaking, all multiples of 1 Hz are zero, except number 

100 and number 103. Only if the ratio of the two frequencies is exactly 100/103 this is valid. For 

example, a ratio that is not exactly 100/103 but, say, 100.01/103 would produce a fundamental 

frequency as low as 0.01 Hz and does not make sense. In practice, we can fulfill this accuracy 

requirement for the Fourier synthesis very easily when we use a computer or other electronic device. 

It will be clear that, strictly spoken, in practice it is impossible to get this exact ratio when you add 

the sine waves of two separate sine sound sources together. Even when you use two separate 

computers that can generate sine waves with highly accurate frequencies, there will always exist 

some inaccuracy of the frequencies. Obviously, the concept of harmonics is only valid when the 

frequency components are related to each other, as is the case when they stem from one sound source 

only (or, one sound source synchronizing another one). 
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Fourier analysis of a periodical signal is called Fourier series, just for the reason that 

the spectrum consists of a series of single frequency components, the harmonics. 

 

In musical terms one speaks of overtones instead of harmonics. There is a small 

incompatibility: the second harmonic (2F0) is the first overtone, and so on. The F0 is 

called the fundamental. 
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5. Sine wave basics 

 

Why use sine waves? Why not use other forms like, for example, triangular or 

rectangular waves or short pulses as frequency components? When we look at the swing 

once more we see that it is moving in a natural way. It turns out that all natural-vibrating 

masses mostly do so in a sinusoidal form which in a manner of speaking is the most 

‘lazy’ way. There must be a reason for the sine tone from DEMO3.1 to sound so boring! 

The added harmonics made 

the tone more interesting.  

 

Another reason to use 

sinusoidal waves is that 

these do not change shape 

when they are processed by 

filters or amplifiers: only 

their amplitude and phase 

(time shift) can be 

influenced. Other 

waveforms do not have this 

property. Spectrally, they 

are the most basic 

components. (This property 

of filters and amplifiers is 

described in the box called 

LINEAR SYSTEMS in section 

8.) Fourier showed us that 

all periodic waveforms can be seen as an addition of a number of these ‘basic’ 

sinusoidal waves. 

 

How can we express a sine wave with a formula? DEMO5.1 shows the construction of 

a sine wave period from a rotating vector (see also fig. 5.1). The length of the rotating 

vector (the amplitude) remains constant and its angle increases proportionally with 

time. The sine of the angle is the projection on the vertical axis. 

 

To express a sine wave with a formula it should have a variable for the amplitude and 

a variable for the angle which is dependent on the time. So, the next formula should do: 

 𝑦(𝑡) = 𝐴 sin(360𝑓𝑡) (5.1) 

where y(t) means a function of time (t), usually more generally expressed as f(t), A its 

amplitude and f its frequency. In this formula we see that only the angle of the sine, 

here expressed in degrees, increases proportionally with time; everything else remains 

constant. As an example, if f is 1000 Hz, the angle increases to 1000 times a whole 360 

degrees of a circle within 1 second. In other words, the angle increases during 1 second 

from 0 to 360000 degrees. 

 
Fig. 5.1. Construction of sine wave by projection 
of rotating vector on y-axis. 

w  t

A

Asin(w  t )



23 

 

 

Now, in math it is common to define angles in radians. When the radius of a circle is 

paced out on its circumference it selects a sector with an angle of 1 radian. As a 

consequence, there are 2π radians in a complete round. The formula then becomes: 

 𝑓(𝑡) = 𝐴 sin(2𝜋𝑓𝑡) (5.2) 

For this purpose, the “angular frequency” (ω) is used instead of f, defining ω = 2πf. 

(See the box THE RADIAN about this definition.) Consequently, the formula for a sine 

wave now becomes: 

 𝑓(𝑡) = 𝐴 sin(𝜔𝑡) (5.3) 

The formula implies that the function ‘goes on forever’: t runs from -∞ to ∞. At t=0 the 

sine value is zero but that is arbitrary, as we could just define the zero time point 

somewhere else in the wave. The next function  

 𝑓(𝑡) = 𝐴 cos(𝜔𝑡) (5.4) 

defines the time origin at the position of one of the peaks of the waveform (cos 0 = 1). 

It remains the same sinusoidal wave but it is only shifted backward in time one quarter 

of a period. This is important when two or more sine waves are added together, which 

is always relevant when 

dealing with spectra. 

DEMO5.2 shows our 

sawtooth wave synthesis 

of DEMO4.2 but now 

with alternating sine and 

cosine (= shifted sine) 

components (see also 

fig. 5.2). The waveform 

has changed 

dramatically and has 

nothing to do with a 

sawtooth any more. 

Obviously, the phase relations between the Fourier components have much influence 

on the waveform. 

 

To define our sinusoidal wave including the initial phase (the angle at t=0) we should 

use the formula: 

  (5.5) 

where φ defines the phase angle in radians at t=0. 

 

( ) ( )w += tAtf sin

THE RADIAN 

 

Defining angles by using the radius as a measuring unit has a 

mathematical reason. So far in our story there seems to be no 

objection against defining the complete circle (3600), for example, 

as 1 which gives 1/4 for a right angle (900), 1/2 for a 1800 angle, 

1/6 for a 600 angle, and so forth. Then we would not have to take 

into account the 2π in our formulas when transforming to and from 

the frequency and time domains and we would not need this angular 

frequency, or even degrees, at all! However, the radian simplifies 

the formulas to transform sine waves into exponential functions 

which in turn greatly simplify the math (as used in Appendix II). 

So, we will come across the ω many times from now on. 
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Instead of defining a phase angle we could use a sine wave plus a cosine wave. The 

result is one sinusoidal wave, its phase angle depending on the amplitudes of sine and 

cosine. DEMO5.3 shows what happens to such a wave (displayed from t=0) when the 

amplitude ratio of sine versus cosine is changed gradually. As you can see, the result is 

only a phase shift. So instead of formula 5.5 we could just as well use the following 

formula for a sine wave with phase information: 

  (5.6) 

where A1 and A2 define the sine and cosine amplitudes respectively. 

 

For the phase shift range to complete a whole 2π circle these A1 and A2 amplitudes 

should include negative values as well. The resulting amplitude (A) of the sine wave 

made by sine plus cosine is expressed by: 

  (5.7) 

which coincides exactly Pythagoras' theorem. (In the DEMO5.3 this relation is built-in 

to keep the resulting amplitude A constant.) This addition of a sine and a cosine as 

vectors with different amplitudes is shown by DEMO5.4. 

 

When a spectrum is displayed, the phase information usually is omitted. Only the 

amplitudes of the sine wave components are represented. The reason is that our ears are 

not capable of detecting the phase differences of components of a purely periodic sound 

(if the period is not extremely long). When you listen to the sounds of DEMO4.2 and 

DEMO5.2 and select the same number of harmonics, you will hear no difference, 

whereas the waveforms are very different! (In the scripts I ensured the intensities of 

both sounds to be equal, to rule out the influence of intensity difference.) Their spectra 

also look exactly the same, as the phase information is absent in the displays. The 

formula which defines a complete spectrum, however, must include the phase 

information. Only then it will contain all information that is present in the signal. 

( ) ( ) ( )tAtAtf ww cossin 21 +=

( )2
2

2
1 AAA +=

 
Fig. 5.2. The 40 harmonics of the ‘sawtooth waveform’ of fig. 4.3, here synthesized 
with alternating sine and cosine components. 
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As you will remember from section 2, the waveform of a sound defines the SPL (sound 

pressure level) which 

varies all the time. How 

can we determine the 

intensity of our sine 

wave? We also read in 

section 2 that the intensity 

is proportional to the 

square of the SPL. We 

cannot square the 

amplitude A of the sine 

wave: within the 

waveform the individual 

levels all have different 

values in the range from A 

to -A. Therefore, we have 

to square the value in 

each position of the 

waveform, which needs 

integration as there are 

infinite positions. To estimate the overall intensity of the sine wave we must take the 

mean of all these values. Then, to convert the value to an amplitude scale again we have 

to take the square root of this mean.  

 

The name for this value of the sine wave is obvious then: the root mean square (rms) 

value. From the box RMS you can see that this rms value of a sine wave is equal to

which is about 0.7 A. 

 

 

  

2/A

RMS 

 

For calculating the power of a sine wave we must square its 

amplitude function: 𝑃(𝑡) = 𝐴2𝑠𝑖𝑛2(𝜔𝑡). To determine the 

overall power, we must calculate its mean which needs integration 

over one period: 

𝑃 = 𝐴2 ∙
1

2𝜋
∫ 𝑠𝑖𝑛2(𝜑)𝑑𝜑
2𝜋

0
, which can be written as  

𝑃 =
𝐴2

2𝜋
∙
1

2
∫ (1 − cos(2𝜑))𝑑𝜑
2𝜋

0
.  This integral can be 

split and the integration of the cosine over two whole periods is 

zero, which simplifies the formula to: 

𝑃 =
𝐴2

2𝜋
∙
1

2
∫ 1𝑑𝜑
2𝜋

0
 ,  resulting to P = 1/2 A2.   

So, the equivalent SPL amplitude (i.e. the result of this power) is 

equal to the square root:⁡𝐴/√2 which is the root mean square 

value of a sinusoidal wave with amplitude A. 
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6. Fourier transform 

 

 In section 4 it was argued that the spectrum of a periodical sound could only consist of 

sinusoidal waves with frequencies that are multiples of F0. The name of the set of 

Fourier coefficients for these types of signals is called Fourier Series. Because of the 

steps in the frequency range, the Fourier transform is called Discrete Fourier 

Transform (DFT). (For pure periodical signals a more strictly name would have been: 

‘Discrete Fourier Series’ but the name DFT is a more universal name, as we will see 

later.) We will use the term Fourier Transform (FT) for the moment. 

 

To calculate the amplitudes (and phases) of these frequency components we need to 

look at only one period of the sound because all periods are the same. How can we 

calculate these amplitudes and phases? For this, we must go into some detail about 

comparing signals. 

 

In fig. 6.1 some arbitrary functions of time are displayed, called f(t), g(t) and h(t), all 

with equal duration. The function f(t) looks more like g(t), than h(t), in this example. 

How can we express this resemblance of functions in an objective manner? Let's assume 

that the functions we want to examine have the same duration, otherwise the 

resemblance estimation makes less sense. The answer is to multiply the functions and 

use the mean of the resulting function as a measure for the resemblance. In fig. 6.1 the 

 
Fig. 6.1. Comparison of signals by multiplication. The function f(t) is better ‘imitated’ 
by g(t) than by h(t). 
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function f(t) is multiplied by g(t) (left column) or multiplied by h(t) (right column). The 

means of the resulting functions then are a measure of resemblance. You can see that 

this method works for positive and negative values of the functions: two negative values 

at some point cause the resulting function to be positive there.  Likewise, if one function 

is positive and the other negative, the result is negative at that point. In addition, when 

one of the functions is zero at some point, the result is also zero there. In fig. 6.1 for 

simplicity the mean values of the result are given. The formal way to value the result is 

explained in box SIGNAL COMPARISON. (The only difference is that the mean values 

are multiplied by the chosen time length of the signal.) We calculated the cross-

correlation factor. 

 

In the figure it can be seen that the functions of f(t) and g(t) are correlated higher than 

f(t) and h(t), which we already assumed from looking at the shapes of the functions.  

 

Now we can apply this cross-correlation (cc) to the Fourier analysis. We compare the 

period of the signal with each sinusoidal component with amplitude equal to 1. The 

better the ‘fit’ the higher the cc or Fourier component will be. We will find all cross-

correlation factors of the signal period with all sine and cosine periods that are multiples 

of the fundamental frequency. 

 

In principle, the Fourier analysis procedure estimates, for each frequency component, 

which amplitude offers the ‘best fit’ with the signal period. This is done for sine and 

cosine periods separately so that the phase information is extracted as well (section 5 

with DEMO 5.3 explained how a combination of a sine and a cosine can define a sine 

wave with any phase angle).  

Appendix I explains how the Fourier components are calculated formally. People who 

do not feel comfortable using some math could simply trust Praat’s Fourier transform 

capabilities to have their spectra presented with a simple mouse click on the button “To 

Spectrum”. 

SIGNAL COMPARISON 

 

To compare the functions f(t) and g(t), both having the same duration, we simply multiply them. The 

mean value of the resulting function then is a measure for the resemblance of the two functions. To 

take the time interval into account (resemblance over longer time intervals should produce higher 

factors) the mean is multiplied with the time interval. This is equivalent to the ‘surface area’ of the 

graph which means integration over the entire time interval. The value achieved in this way is our 

objective resemblance measure: we have calculated the cross-correlation factor. Its formula will 

now be straightforward: 

𝑟0 = ∫ 𝑓1(𝑡) ∙ 𝑓2(𝑡)𝑑𝑡

𝑇/2

−𝑇/2

 

Here we selected the centers of the functions as the time origin. This is arbitrary, of course.  

Obviously, the correlation factor could be negative as well. When one function is the opposite of the 

other, i.e. when a(t) = - b(t), their correlation has a maximum negative value. 
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However, the length of the sound or sound part selection is important to bear in mind: 

only when the length is exactly one period or an exact multiple of one period then the 

FT graph will show the correct spectrum. In fact, the FT does not ‘know’ the real period; 

it regards the sound part you selected as ‘the period’ and it simply produces frequency 

components that are multiples of 1/TS, where TS is the length of the selected sound, 

which is not necessarily equal to the real period.  

In fig. 6.2 we see a spectrum of a sound part that contains 3.3 periods of the periodic 

signal of fig. 3.3 of 200 Hz fundamental frequency. The length is 16.5 ms (3.3 x 5 ms) 

so that the FT only calculates frequency components that are multiples of 1000/16.5 Hz 

or about 60.6 Hz. There are many of them whereas the ‘real’ frequencies with which 

the signal was constructed (400, 800 and 1000 Hz) are absent. The 800 Hz component 

shows up almost at the right place but only because the 13th multiple is 788 Hz which 

is very near 800 Hz. The ‘real’ 800 Hz has also gone. 

 

If the periodic signal from which we want to take the FT is much longer (say, 1 second 

or so) then the FT components are much more ‘closely packed’ and, therefore, take 

positions much nearer to the ‘real’ frequencies and the ideal spectrum is much better 

approximated (see fig. 6.3 which displays an FT of about 0.4 second of the same signal). 

 
 
Fig. 6.2. Waveform and spectrum of 3.3 periods of the signal of fig. 3.3 from section 3 
The ‘real’ components (dashed lines) are absent. 
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The spectral lines are so close that they form a black background1. But even then, most 

components have frequencies that have nothing to do with the original 3 components 

with which the signal was assembled. This phenomenon is often called ‘spectral 

leakage’. The only selections which get rid of these unwanted components have the 

length of exactly one period or multiple periods of the signal. Only then the FT 

components will fit completely. A more practical method to suppress this spectral 

leakage and its explanation we will meet in section 13 about windows, which is an 

essential part of the book. 

 

In the scripts for generating the figures I made sure that Praat uses the DFT instead of 

the FFT (Fast Fourier Transform). For the FFT it is necessary that the program 

lengthens the signal with some sound portion of zero amplitude. This could distort the 

shape of the spectrum. If you want to use the ‘To Spectrum’ button for explorations in 

Praat, you should NOT select the box ‘Fast’ in the next window, otherwise Praat will 

calculate the FFT. Unfortunately, the ‘Fast’ option is the default choice. The difference 

between DFT and FFT is explained in section 26.1 about Praat’s Spectrum in the 

practical part of the book, together with the way to minimize the unwanted spectral FFT 

effects. 

 

It is important to realize that the phase information of all frequency components is 

omitted in all these spectrum graphs. However, when we transform the Spectrum object 

in Praat back into a Sound object again, the original sound is reconstructed in its 

entirety. This is possible because Praat's Spectrum object contains the phase 

information as well. In fact, in the Spectrum object both the sine and cosine values are 

present, so it forms the complete Fourier transform of the sound. DEMO6.1 shows the 

spectra of two different sounds, one sound consisting of a smoothed (gradually started 

and stopped) part of a sine wave of 300 Hz followed by a sine wave of 800 Hz (also 

 
1 Remark about the spectrum displays applied. For explanation purposes the spectra from figs.6.1 

and 6.2 look different from Praat's normal spectrum displays, where the spectral points are 

interconnected with lines (linear interpolation). For clearness of the spectral effect concerned I 

choose the pure 'line' spectrum display (possible via the ‘Ltas’ in Praat: to be explained in part B). 

 
Fig. 6.3. Spectral leakage: spectrum of 0.4015 seconds of the signal of fig. 3.3. 
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smoothed in the same way), both during 1 seconds, and the other sound consisting of 

the sum of the same components. The spectra are exactly the same! The two sounds 

have the same spectral components, only their phase relations are different, which are 

not contained in the ‘power spectrum’ displays. (The smoothing avoids the spectral 

effects that arise when the selected interval is not filled with a whole number of periods 

of a component, which is the case for the first sound. This smoothing is explained in 

section 13 about windowing.)  

 

In the example given in fig. 6.2 the spectrum has zero value at 0 Hz. Of course, a 

frequency component of 0 Hz does not make sense. But from the Fourier transform the 

value at 0 Hz can be seen as the correlation of the period with a 0 Hz sine wave with an 

amplitude of 1 which is nothing else than a horizontal line with the value 1. In other 

words: the value is equal to the mean of the wave. In most practical sound waves this 

value is zero (or very near zero) as the waveform areas above and below the horizontal 

axis are mostly in balance. In practice this value is often called the DC component. (DC 

stems from the words Direct Current as opposed to Alternating Current, which 

originally were electricity concepts.) 

  

 
 
Fig. 6.4. Waveform symmetry. Upper row: even functions. Center row: odd functions. 
Bottom row: half wave symmetry. 
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Some types of signals have special phase properties because they are symmetrical in 

some way. If the waveform is symmetrical with respect to the y axis it is defined by the 

formula 𝑓(−𝑡) = 𝑓(𝑡). Some examples you can see in the upper part of fig. 6.4. (As 

mentioned before, the choice of the time origin for periodical signals is arbitrary 

because in theory these signals have no beginning or end. For simplifying the math, it 

is often convenient to define the center of the period of the symmetrical signal as the 

time origin.) All sine components then, are zero: there are only cosine components. The 

explanation is as follows: every sine component is computed by multiplying it with the 

function. Every positive position of the result on the time axis has a value that is the 

opposite of its corresponding negative position. This multiplication with the 

symmetrical function therefore causes canceling of all these pairs of points, causing all 

sine components to be zero. The cosine component pairs multiplied by the symmetrical 

function do not cancel: they are added. These signals are called even.  

 

When the signal has a rotational symmetry of 1800 with respect to the origin, it can be 

defined by the formula 𝑓(−𝑡) = −𝑓(𝑡), as the center of fig. 6.4 shows. These signals 

are called odd.1 With the same reasoning as we used above it can be seen that for all 

odd functions the cosine components are zero: only sine components exist. 

 

A special type of symmetry is called half wave symmetry. These functions are defined 

by 𝑓(𝑡 + 𝑇/2) = −𝑓(𝑡), as shown in the bottom of fig. 6.4. By looking at their 

waveforms it can be concluded that all products of the signal period and frequency 

components with an even number of periods will be zero. In other words: for this type 

of signals only the odd-numbered harmonics exist. (In general cases, both sines and 

cosines are present. Of course, when there the signal is also even or odd, then, 

respectively, only odd-numbered cosines or only odd numbered sines exist.) 

 

Now you can understand why the spectrum of the triangle wave of fig. 4.1 of section 4 

only contains only odd-numbered harmonics. What’s more, due to the symmetry with 

respect to the y-axis, it contains only cosines. From this symmetry knowledge you can 

also conclude that the spectrum of the sawtooth wave from fig. 4.3 only contains (odd- 

and even-numbered) cosines. 

 

The transform from spectrum back to sound again is named ‘inverse Fourier 

transform’. As you can guess, it simply comes down to an addition of all sine wave 

components with their individual amplitudes and phases (or all sine and cosine waves). 

To distinguish the transform from sound to spectrum from inverse transform, it is often 

called ‘forward Fourier transform’. 

 

 
1 The words even and odd are used because of the fact that functions raised to an even power (x2, x4, 

x6, etc. and also cos x) are always positive for positive and negative x, and functions raised to an 

odd power (x, x3, x5, etc. and also sin x) always have the same sign as x, thus obeying the formulas 

for even and odd functions respectively. 
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Understanding the principle of the Fourier transform is a very important step in our 

understanding of signals. Many things still have to be explained to understand the basic 

relation between time functions and their spectra but most of them are based on the 

Fourier analysis principles.  
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7. Resonator 

 

In section 3 we used the example of a swing and mentioned the fact that after a single 

push from its position at rest, it swings back and forth with a constant frequency, its 

deviations from its rest position slowly decreasing, until it finally comes to rest again 

because of air resistance and friction. Therefore, after each cycle, its amplitude is 

decreased by a small percentage. You could say that after some time the amplitude has 

halved and, after the same amount of time the former amplitude has halved again. This 

decrease of amplitude over time occurs conforming to an exponential curve (red line in 

fig. 7.1). It has a constant percentage of decrease per time unit. This can be expressed 

by the following formula: 

 𝐴(𝑡) = 𝐴(0) ∙ 10−𝑝𝑡,   ≥ 0, p > 0 (7.1) 

Here is A(t) the amplitude at time t, A(0) the amplitude at start and p determines the rate 

at which the amplitude decays. For example, when p = 1/40 then the amplitude 

decreases to 0.1 of its initial value after 40 seconds (pt = 1 then). Consequently, after 

120 seconds its amplitude is 1/1000 of the start value (perhaps not an unrealistic value 

for a swing). 

Instead of logarithms with base number 10 it is customary to use the natural logarithm 

(ln): it has base number e which is 2.781828... This e stems from Leonhard Euler, a 

Swiss mathematician and physicist. As you know, a logarithmic function can be defined 

using any base number. The reason for using e is its mathematical convenience: 

differentiation and integration of logarithmic functions with base e offer great 

simplicity compared to base 10 or other base numbers. And differentiation and 

integration are often necessary when transforming signals from one domain into the 

t

 
 
Fig. 7.1. Sine wave with exponential decaying amplitude. 
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other. Do not bother about the physical meaning of the choice of the base number: there 

isn’t any here! Now, our formula becomes as follows: 

 𝐴(𝑡) = 𝐴(0) ∙ 𝑒−𝛼𝑡,   ≥ 0, α > 0 (7.2) 

Here the decay rate is defined by α. If it is 0.0576 then the decay rate is the same as 

mentioned in our swing example above. (Sometimes the decay rate is defined as the 

time interval wherein the amplitude decreases 50 percent, also called the half-life. In 

our case this time interval is: ln(2)/α, or, in the base 10 log case: log(2)/p which equals 

12.04 seconds. This can be calculated by simply substituting A(t) = 1/2 ∙A(0) in the 

formulas.) 

 

If we replace the amplitude of the general formula for the sine wave (5.3) with formula 

7.2, we have the expression for the single damped sine wave: 

 𝑥(𝑡) = 𝐴(0) ∙ 𝑒−∝𝑡sin⁡(𝜔𝑡),  t ≥ 0, α > 0 (7.3) 

In practice there are many more examples of objects that can produce damped sine 

waves: they are called resonators. Think about 

popping corks from bottles, tapping glasses, 

reverberation of rooms, oral cavities for speech 

and... the sounds of most musical instruments! They 

all obey the same formula 7.3, each with their own 

values of their damping α and their resonance 

frequency ω (although the ways the sounds start 

can vary).  

 

Devices like resonators are called systems. They do 

not generate sound on their own but have to be 

excited (activated) by some input signal. The 

resulting output signal is the response on the input signal, the form of the output 

depends on the input and the system. This is schematically represented by fig. 7.2 where 

f(t) is the input signal and g(t) is the output signal. 

 

The resonators are a special type of systems. These resonators have very useful 

properties, as we will see. 

  

t

 
 
Fig. 7.2. The signal g(t) is 
the result of the input signal 
f(t) modified by the system. 

f (t ) g(t )

System
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8. Filtering 

 

When, while sitting on a swing, you start aiding it by movement of your body at the 

‘natural’ pace of the swing the deviation increases until it reaches a steady value, 

whereas moving your body at lower or higher rates the final steady value of the 

deviation seems to decrease. Apparently, the swing can be seen as a ‘filter’ which 

amplifies what we might call the ‘input’ when its frequency is equal to or near the 

natural frequency of the swing and attenuates the input when its frequency is outside 

this range. This is equivalent to the working of a band-pass filter. Indeed, electronic 

devices can be made that behave like resonators which could be used as band-pass 

filters.  

 

When we construct a graph that displays the final swing amplitude as a function of 

“body movement frequency” or input frequency, we end up with something similar to 

fig. 8.1. The peak of the deviation shows at 0.4 hertz which means that our imaginary 

swing has its resonance frequency at 1 cycle per 2.5 seconds. This graph is nothing 

less than a band filter function in the frequency domain. 

 

Just like spectra, it is customary to display the amplitude axis of filter functions on a 

logarithmic scale, as also shown in fig. 8.1.  

 
 
Fig. 8.1. Deviation of swing as function of push frequency. Top: linear amplitude scale; 
bottom: logarithmic amplitude scale. 
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 The filter is a system: it 

responds to the input signal. To 

define its properties the ratio of 

output amplitude and input 

amplitude is relevant only. 

Therefore, the value at each 

frequency of the filter function 

represents the output amplitude 

divided by the input amplitude 

for the frequency concerned.  

 

Important to mention here is 

the fact that a specific sine 

wave at the input of a filter 

causes a sine wave at the output with the same frequency: no frequencies are generated 

by the filter. Only the amplitude and phase of the input sine wave components are 

altered by the filter (see the box called LINEAR SYSTEMS about this property). 

 

The filter function, defined by the ratios of output and input amplitudes for each 

frequency can be expressed by: 

 𝐻(𝜔) =
𝐺(𝜔)

𝐹(𝜔)
 (8.1) 

where H(ω) is the filter function or transfer function, G(ω) the output spectrum and 

F(ω) the input spectrum. Because of the fact 

that the system is linear, all input sinusoidal 

components emerge at the output, only with 

their amplitudes multiplied by the filter 

system. Schematically filtering can be 

visualized as in fig. 8.2 which is the 

frequency domain version of fig. 7.2. (Later 

on, in this section we will learn that for 

estimating the output spectrum the phase 

properties of the filter must be taken into 

account. Strictly speaking the functions F, H 

and G here refer to the complex spectra.)  

 

The band filter of fig. 8.1 is the simplest type in this category: it is a second order band 

filter (which stems from the fact that its mathematical transfer function consists of terms 

with powers of a maximum of 2, as described in section 18 and appendix III). 

 

Obviously, this resonator-type of band filter function has, apart from the position of the 

peak, another variable: the width of the graph. The broader the width, the greater the 

LINEAR SYSTEMS 

 

Devices like amplifiers, attenuators (like volume controls), 

and filters, are all linear systems. They have two 

fundamental properties: 

1. When the input amplitude is multiplied by a factor a, the 

consequence is that the output amplitude is multiplied by the 

same factor a (homogeneity). 

2. When the input can be seen as the sum of different 

frequency components, the output is the sum of the 

responses to each component separately (additivity). 

Devices like modulators, distorting amplifiers, frequency 

mixers, etc. all are non-linear systems as they produce 

frequency components not present in the input. 
 

 
 
Fig. 8.2. The output spectrum G(ω) 
is the result of the input spectrum 
F(ω) multiplied by the filter 
transfer function H(ω). 
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range of frequencies that will pass through the filter, and vice versa. This variable of 

the filter is called bandwidth (B) and is expressed in hertz.  

 

Because the slopes of practical filter functions in general vary gradually, we need some 

formal procedure how to define bandwidth. To the left and the right of the top of the 

function we can define points on the frequency axis where the function has decreased 

to its half-power value with respect to the top power value. The bandwidth, then, is the 

difference between these frequencies, see fig. 8.1. In filter theory, and generally in the 

whole field of signal analysis, one deals with amplitude (voltage) instead of power. We 

know from section 2 that the power is proportional to the square of the voltage. Then 

the power halved means that the amplitude must be divided by √2. So, we must find 

the frequencies where the function is 1/√2 times its top value, which is -3 dB if the top 

value is defined as 0 dB. (Although the graph represents amplitude, the dB values refer 

to power, as you may remember.) Therefore, this bandwidth is called B√2 or B3dB to 

distinguish it from possible other definitions. When there is no subscript, this B3dB is 

meant.  

 
Fig. 8.3. Spectrum of saw tooth wave from fig. 4.3 (top) filtered by resonator filter of 825 
Hz (center) results in their multiplication (bottom). 
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Now, imagine activating a resonator repeatedly, for example by using our sawtooth 

waveform. In the frequency domain it is easy to understand what will happen: all 

individual frequency components (which all are pure sine waves) will have their own 

amplification or attenuation (and phase shift) caused by the resonator according to its 

filter form. As a consequence, the resulting spectrum is the original spectrum multiplied 

by the filter function (fig. 8.3). This graph is the spectrum of the signal at the output of 

this resonator band filter.  

 
Fig. 8.4. Same as fig. 8.3 but now fundamental frequency of saw tooth ‘tuned’ to resonator 
frequency (825 Hz). 

 

Next, we can do the same by activation with a higher frequency: when the repetition 

rate (= fundamental frequency) is equal to the center frequency of the filter (825 Hz) 

we get the spectrum of fig. 8.4. We see that the next harmonics of this spectrum fall far 

from the filter function center and are very much attenuated.  

 

Fig. 8.5 displays the opposite: a very low repetitive rate (8 Hz) is applied so that the 

spectral lines are very near to each other. (The frequency range is limited to 2000 Hz to 

zoom in on the area of interest.) The filter function has been approximated almost 

perfectly in the vicinity of its peak, were it not for the gradual attenuation of the 

amplitudes as the frequency increases (the ‘roll-off’) of the saw tooth spectrum which 

is the reason for the relatively high level of the low frequency components. (In the 
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picture the overall level of the filtered spectrum is raised to compensate for the low 

level of the harmonics of the saw tooth in the vicinity of the resonator frequency.)  

 

 
Fig. 8.5. A very low F0 of the saw tooth wave offers a good approximation of the resonator 
filter graph near its peak, apart from the gradual decay of increasing frequencies (roll-off) 
of the saw tooth spectrum. (The level has been raised 30 dB to compensate for the low 
amplitude of the harmonics.) 

 

 

What we see is that in all cases the spectral amplitudes at the output form a sampled 

version of the spectral band filter function if we, one way or another, correct for the 

slope of the saw tooth spectrum. Sampled not in the (usual) time domain but in the 

frequency domain. 

 

When we apply a series of very short pulses instead of the saw tooth for activating the 

resonator then it will ‘run on its own’ during the whole period between the pulses, just 

like the swing after it’s been given a push (see section 3). It can be expected that the 

influence of the excitation source on the resonator is then minimal. DEMO8.1 shows 

the resonator activated in this way: the resonator filter function has been very well 

approximated (see also fig. 8.6). After each excitation pulse we can see the damped sine 

wave of our swing, only on a much faster pace so that we can hear it.  
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Fig. 8.6. Excitation of resonator with short pulses at low repetition rate (8 Hz). Top: input. 
Center: output. Bottom: spectrum approximates the filter spectral function (added in red). 

 

Fig. 8.7. Same as fig. 8.6 but now the resonator activated at high repetition rate (200 Hz). 
The harmonics in the spectrum (bottom) are so wide apart that the filter function (added in 
red) cannot be approximated accurately. 
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The demo also plays the sound when the pulse is repeated with 200 Hz, like we did 

with the saw tooth. The resonator frequency sounds much less clear and the 200 Hz 

tone with harmonics dominates, as the spectrum shows (see also fig. 8.7). Like the 

thought experiment we used before, we can continue to gradually lower the repetition 

rate until we reach zero: that means activation takes place only once. Now the spectrum 

is continuous so the approximated filter function form is not sampled any more but is 

also continuous. There is no interaction of a period with the next one because it will 

never come!  

 

But, to exclude any influence of the excitation pulse on the damped sine, we would also 

like to activate the resonator with a pulse duration of 0 seconds to let it run on its own 

completely from t = 0. Of course, with a zero length the pulse has no energy left for 

activation. To handle this problem the concept of the delta function or Dirac pulse is 

invented. Its mathematical properties are defined as follows: the duration must be 

infinitesimally short; its surface area (duration multiplied by amplitude) must be 1. The 

consequence is that its amplitude must be infinitely high. In practice this is impossible, 

of course, but mathematics is not subject to the restraints of practical reality. For doing 

practical experiments we could use pulses that are very short in relation to the periods 

of the spectral components concerned. In fact, this is what happens in the demo. Later-

on we will get some insight in the way we can keep the effects of applying a pulse with 

non-zero length negligible in practice. 

 

In fig. 8.6 and fig. 8.7 we see that the spectral component amplitudes follow the form 

of the resonator filter exactly, only the high repetition rate of fig. 8.7 causes the spectral 

filter function to be ‘sampled’ at greater distances. Apparently, the spectral components 

of the repetitive pulse itself all have the same height: there is no ‘roll-off’. (This is only 

theoretically so for infinitesimally short time functions, i.e. delta pulses. Any pulse 

duration greater than zero will cause some spectral roll-off, as we will see in section 13 

about windows.) 

 

Important to mention here, however, is that the output of a filter, activated with a once-

occurring Dirac pulse is called the impulse response. As we already saw in DEMO8.1 

the impulse response of our resonator is a damped sine wave. It defines the filter 

properties completely. 

 

As a conclusion of all this, when we band filter a specific sound we can find the 

resulting sound by multiplying the frequency components of its spectrum by the values 

from the band filter function at the corresponding frequencies, and transform back to 

sound again, right?  

 

No - wrong! From filter graphs like the red lines in fig. 8.6 and 8.7 the phase 

information cannot be read, just like in the case of the display of a spectrum in section 6. 

A ‘normal’ filter, like our resonator-type will have a phase behavior as shown by the 

red line in fig. 8.8. You can see that the phase angle starts with zero radians and is 
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suddenly swept to almost minus pi at the resonance peak. Beyond the resonance 

frequency the phase angle remains about minus pi. The ‘fast’ phase shift near the 

resonance frequency is characteristic for this type of filter but its explanation falls 

outside the scope of this book.  

 

So, if we band filter a sound with a filter like this by spectral multiplication, we must 

take into account the phases of all spectral components of the sound AND the phase 

shifts by the filter at all frequencies of the signal's spectrum. (In fact, to the phase angle 

of each frequency component of the input we must add the phase angle of the filter at 

the corresponding frequency.)  

 
Fig. 8.8. Amplitude graph (black) and phase graph (red) of a resonator filter. 

 

 

In short, we need a vectorial multiplication, as the sine components have a magnitude 

and a direction (phase) as explained in section 5. The vector manipulations can be done 

adequately by using complex numbers. In Appendix II you will find an explanation of 

the principle behind the complex calculation. For now, it is sufficient to know that 

complex multiplication of spectra can be done in Praat. 

 

What will happen if we do not bother about the phases of the filter and multiply the 

(complex) Spectrum object of the sound with the corresponding filter magnitude 

values? The phases of the spectral components remain the same, only the magnitudes 

alter. So that will not influence the resulting (amplitude) spectrum graph. With 

DEMO8.2 you can experience the difference. If the repetition frequency is not 

extremely low (say, above 60 Hz) the filtered signals sound the same. On the time scale, 

however, we see that the resulting waveforms of the two types of filtering differ 

substantially (see also fig. 8.9). 

 

This last type of filtering (multiplying with magnitudes only) is called zero phase 

filtering. This filtering is not causal which means that the output can start before the 

signal starts! In fact, the impulse response of this type of filtering is symmetrical around 

the zero on the time axis. It can only be done in analyzers where a signal can be put in 
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a memory, like a computer. In all ‘real world’ filtering, however, obviously there cannot 

be a response before the start of the input signal. 

 

Fig. 8.9. Short pulses repeated with 150 Hz filtered with resonator filter by multiplication 
of their spectra. Upper graph: output when phase behavior of filter is taken into account. 
Lower graph: output when phase is NOT taken into account ("zero phase filtering"). 
 

 

Filters exist in a great variety of types. Main types of filters are low-pass and high-pass 

filters. The names speak for themselves. Some practical examples of the different types 

are depicted in fig. 8.10. For low-pass and high-pass filters too, the point where the 

amplitude is -3 dB relative to the maximum is used as a parameter of the filter. The 

frequency where this is the case is called the cross-over frequency (fc). 

 

The band-pass example is different from our resonator filter: the pass band is much 

wider. In this example the 3-dB bandwidth (B) is 1000 Hz with a center frequency of 

1400 Hz whereas the B of our resonator example is only 8 Hz with a center frequency 

of 825 Hz. 

 

This type of wider band-pass filters can be realized by combination of a high-pass and 

a low-pass filter. Then the output of one of the filters forms the input of the other one 

(cascade configuration, see fig. 8.11). The cross-over frequency of the low-pass filter 

must be higher than that of the high-pass filter (otherwise there is no output of any 

importance at all!). The difference between the cross-over frequencies then is the 

bandwidth. A band suppression filter (sometimes called a notch filter) can also be 

assembled by using a low-pass and a high-pass filter. The configuration then cannot be 

a cascade: the input signal must be fed to both filters simultaneously and the filter 
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outputs must be added together. Now the cross-over frequency of the low-pass filter 

must be lower than that of the high-pass filter (parallel configuration, see fig. 8.11).  

 

 

 

Fig. 8.10. Examples of low-pass, high-pass, band-pass and band suppress ('notch') filters. 

 

What can be seen in fig. 8.10 is that the 0-dB reference level is positioned at the 

maximum of the graphs. Actually, the reference is determined by the output signal 

amplitude being equal to the input signal amplitude so that the ratio = 1, i.e. when there 

is no amplification or attenuation. Although resonators are able to ‘amplify’ the input 

amplitude at their peaks (think about the swing that can reach much greater deviations 

than the push movement itself), we will still scale their peaks to 0 dB for our purposes. 

That is only a matter of scale agreement; the forms of the filter functions obviously 

remain the same. Usually, graphs of filter functions are presented without the phase 

properties: only the ratios of output amplitudes and input amplitudes, their gains, are 

given. 

 

Note the distinction of the reference of sound spectra and that of filters: sound spectra 

dBs refer to a signal level (the hearing threshold) whereas filters refer to their 

output/input ratios. Filters do not generate signals! 

 

As you noticed, the frequency scales in fig. 8.10 are also logarithmic, just as the vertical 

(amplitude) axes. Although there are some exceptions, this is commonly applied for 

audio (= low frequency) filters, as the human frequency perception is logarithmic as 

well. In addition, because the functions of physical (analog) filters are usually 

exponential, displaying their functions on logarithmic scales has the effect that, at least 
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some distance from the cross-over frequencies, the lines are quite straight, as you can 

see in the graphs. Therefore, a logarithmic frequency scale, together with a logarithmic 

amplitude scale, makes it possible to define the steepness (slope) of the low and high-

pass filters with a simple variable: the number of dBs per octave (dB/oct) as the 

steepness expressed in this manner of most types of linear filters is constant. In the 

figure, therefore, you see that the slopes are all rather straight lines. As you probably 

know, one octave means a factor 2 in frequency. The low and high-pass filters from 

fig. 8.10 have slopes of 72 dB/oct. For the purposes of this book, however, we generally 

use linear scales for the frequency, which is best suited for the explanation of the 

subjects the book covers. 

 

 

 

Fig. 8.11. Combination of low-pass and high-pass filters can form band-pass filters (left) 
or band suppression filters (right). 

 

The slopes of the high-pass and low-pass filter examples are very steep (as said, 72 

dB/oct) compared to the slopes of our resonator (the resonator slopes far from the 

resonance frequency are only 6 dB/oct). Increasing the steepness of a filter can be 

achieved by applying higher order terms in its mathematical transfer function. For many 

filtering purposes (i.e. selecting specific frequencies from a band of frequencies, 

suppressing interfering frequencies, etc.) one prefers a high steepness for obvious 

reasons, and to this respect the modern techniques have no limitations in practice, so, 

then why not make them extremely steep? The answer is that the phase behavior of a 

filter depends on the steepness: a very steep filter causes great phase angles between 

output and input, which imply long response delay times. As an example: the delay at 

the cross-over frequency of the low-pass filter of fig. 8.10 is almost 2.5 complete 

periods! It means that filters for low frequencies have longer delay times than high 

frequency filters. It's all a consequence of the relation f  = 1/t as we will see throughout 

the whole book. 

 

The various delays of different frequency components of the spectrum caused by the 

phase behavior of a filter produces an unwanted time smearing, the phase distortion. 

Several types of filters have been developed to overcome this effect. Their phase angle 
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increases or decreases linearly with increasing frequency so that the time delay is 

constant for all frequencies: the linear phase filters. 

 

The mathematics available for designing practical filters is very comprehensive and the 

electronics to realize the theoretical developed filters in practice is very advanced. Later 

we will learn about the digital representation of signals (section 17) and digital filtering 

(section 18) which offer great possibilities, like zero phase filtering, an example of 

which we met already in fig. 8.9. The slope steepness and stability that can be reached 

with digital techniques go far beyond the possibilities in the analog area. However, 

every filter forms a compromise between slope (or ‘selectivity’) and response time. 

This compromise, as you will understand, is no matter of design limits but of the laws 

of physics.  

 

The field of filtering is very broad and many good books about filters are available. So, 

at this point we will leave the subject here as the overall principle of filtering should be 

clear. In section the practical part of the book some special types of filters are described. 
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9. Continuous spectra 

 

From DEMO8.1 we learned that the sound of the resonator can best be heard when the 

repetition rate is very low. In that case we hear the same sound of the once-activated 

resonator repeated. When we look at the output waveform of our resonator activated 

with a low repetition rate we can see a series of separate damped sine waves, see 

fig. 8.6. The excitation rate may be low enough for the damped sine waves to come to 

practically zero amplitude before a new excitation occurs. If we continue lowering the 

excitation rate, the waveform of the damped sine waves practically does not change any 

more, only the time between the damped sine bursts increases. The central frequency 

and the damping of the resonator remain constant which means that the peak position 

and peak width do not change: the filter function remains unaltered. It is approximated, 

however, with more and more accuracy. We can apply this increase of time to an 

already existing (recorded) sound of a resonator excited at a certain rate by ‘artificial’ 

insertion of time at the end of each period, just before a new excitation period. Then, 

the spectral lines of the output spectrum are shifted nearer to each other because the F0 

decreases: 

 𝐹0
′ =

1

𝑇0+𝑇𝐴
 (9.1) 

Here 𝐹0
′ is the new 𝐹0, T0 is the period time of the excitations and TA is the added time 

to the period. (The overall power of the signal decreases by this manipulation so that 

the spectral amplitudes are all attenuated according to the factor (T0+TA)/T0. On a log 

scale all components shift down the same number of dBs. Consequently, after scaling 

the graph, the shape of the spectrum remains the same.) Again, as in our thought 

experiment in the beginning of section 8, the limit is reached when F0 = 0, i.e. 

equivalent to the resonator activated only once. We then have our impulse response 

back again. (Theoretically it is an approximation, not the real impulse response, because 

the exponential function is not exactly zero at t = T0 and is forced to become zero there. 

The theoretical exponential never ends.) 

 

When the repetition rate approaches zero the number of ‘spectral lines’ in the frequency 

domain tends to infinity. Fortunate enough, there is no need to calculate an infinite 

number of Fourier components: the mathematics provides us with the calculus of 

integrals. Instead of a Fourier series we use the Fourier integral. In appendix II.3 the 

Fourier integral is calculated, using complex numbers. For people who do not like 

mathematic calculus it is sufficient to know that the spectral functions of once-

occurring time events can be estimated using integrals, offering spectra with infinite 

numbers of points, or in other words, continuous spectra. As a consequence, the 

displays of spectra of single time events will not contain spectral lines but are 

continuous graphs.  

 

Unfortunately, Praat does not provide the calculation needed for the Fourier integral. 

The funny thing is: we do not need it! If we make the F0 sufficiently low we can 
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approximate the continuous spectrum well enough. In fact, DEMO9.1 uses this trick 

(see also fig. 9.1). It generates damped sine waves during sufficient time for the 

amplitude to become negligibly low, and extends the sounds to 1.25 s, even when the 

damped sine wave has ‘long’ before vanished already. The spectral points of the DFT, 

therefore, are positioned at 0.8 Hz apart. In addition, Praat's spectra interpolate linearly 

between the points, which fills the space between the spectral lines so that the graph 

looks very smooth and continuous.1  

 

So, DEMO 9.1 generates some possible outputs of resonators when activated once. 

When we simulate a low damping (which can be seen as loss factor), the damped sine 

wave lasts much longer and its (continuous) spectrum shows a narrower peak, i.e. a 

smaller bandwidth, than the first spectrum (top of fig. 9.1). When we do the opposite: 

simulate a high loss factor then the tone comes much faster to an end and its spectrum 

 
1  As the DFT computes components that are 1/T apart in frequency, where T is the duration of the 

time signal, the widths of the frequency steps are called bins, to indicate a range instead of a point. 

 
 
Fig. 9.1. Outputs of once-activated resonators with various damping factors and their 
spectra. Top: Bandwidth B = 8 Hz. Center: B = 2 Hz. Bottom: B = 35 Hz. 
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becomes much broader (bottom of fig. 9.1. In all cases the “resonance” frequency, 

however, remains the same (we hear the same tone).  

 

We see that the spectrum of the output of a once-excited resonator (i.e. the impulse 

response) shows an almost symmetrical frequency area around its resonance frequency. 

(Later on, we will learn that the spectrum of a damped sine wave is not exactly 

symmetrical. For now, it is sufficient to regard it as symmetrical if we do not look too 

far from its peak.) The longer the decay time of the resonator, the narrower the spectral 

area and vice versa. When you think of increasing the decay time to infinity, the spectral 

width decreases to zero: the spectral line of one continuous sine wave is back again! 

The limit in the other direction can also be explored by reasoning: when you let the 

decay time tend to zero, the spectral width tends to infinity and we cannot speak of a 

sine wave any more. Indeed, the “spectrum” of an infinitely short pulse that still has 

energy (the Dirac pulse), has an infinitely high bandwidth and thus is a horizontal line 

from zero to infinitely high frequency. 

 

As we have seen in section 7, the function that defines the decaying sine wave along 

the time axis is: 

 𝑥(𝑡) = 𝐴0𝑒
−𝛼𝑡sin⁡(𝜔𝑡),  t ≥ 0, α > 0 (9.2) 

which is a multiplication of a continuous sine wave with a decaying exponential. In 

practice the damping α of a (mechanical) resonator is not independent of its center 

frequency ω which has the effect that, roughly speaking, low frequency resonators 

produce longer tones than high frequency ones, when excited once. In our computer, 

naturally, we are free to generate these kinds of damped sine waves with independent 

variation of the parameters α and ω. Consequently, we see that if we increase ω, the 

area underneath the enveloping exponential curve is ‘filled-in’ as it were with more and 

more periods of the central frequency sine wave, whereas the enveloping curve itself 

remains unaltered. Alternatively, when we increase α then obviously the enveloping 

curve becomes shorter while the period lengths within the curve remain constant. 

 

For periodical activated resonators at a high repetition rate the spectral harmonics may 

be too far apart for a proper approximation of the underlying continuous spectrum. In 

that case we can very well use the time insertion trick described above and may reach 

an approximation of the filter function that is sufficient for measuring its resonance 

frequency to a reasonable accuracy. 

 

To apply this time insertion later on to an already recorded repeatedly excited resonator 

signal, naturally we do not need to insert time into all repetition periods. As fig. 9.2 

explains, we simply have to isolate one period from the train of periods, add a fair length 

of zero sound to it and look at its spectrum. You will know the reason why this is so 

from section 6: the DFT of one period of a periodical signal is equal to the DFT of an 

integer number of periods. (This is not so when the FFT is used: it lengthens the selected 

signal with some time.)  
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Fig. 9.2. Top: summed outputs and spectrum of two different resonators activated by 
240 Hz pulse series. Isolating one period and insertion of time at the end (bottom) 
approximates the filter function very well. 

 

 

The example of fig. 9.2 deals with two different resonators activated by the same source 

(i.e. the repetitive short pulses). The signal is the sum of the two resonator outputs. 

(Practical sound signals often contain a set of different resonances instead of only one.) 

From the line spectrum the two different resonance frequencies cannot be read very 

accurately. The continuous spectrum displays the two resonance frequency positions 

very clearly. 

 

With this trick we are able to reveal the envelope (filter) function quite well, not really 

limited by the spectral line distance. Of course, there is some pitfall here... The period 

of the excitation rate must be sufficiently long for the exponential decaying amplitude 

to reach practically zero but the amplitude at the end of the original period could still 

be substantial, especially when the original repetition rate was high. The end of the 

decaying wave and the start of the new one then interact with each other. In fact, the 

continuous sine wave is not multiplied by a real exponential function but by a truncated 

one! 

 

Obviously, the amplitude at the end of the period depends on the repetition rate as well 

as on the damping of the resonator. Increasing the damping (α) and decreasing the 

repetition rate (which increases the period T) both lower the end amplitude. In the 

spectra of fig. 9.1 you can see that a higher α causes a broader peak, which will tolerate 

greater distances between the spectral lines, and therefore higher repetition rates, to 

approximate the filter graph. 
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Fig. 9.3. Truncated damped sine wave and its spectrum. 
 

 

With higher end amplitudes things are far more complicated, as you can see in fig. 9.3. 

In this case the truncated time function can be regarded as a damped sine wave 

multiplied with a rectangular function. What is the relation between these multiplied 

time functions and their spectra? Answering that question will require a separate and 

important section 13 about windowing. First, however, we must take an important side 

step. 
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10. Multiplying signals 

 

In section 9 we saw that the damped sine wave can be seen as a multiplication of a 

continuous sine wave with the decaying exponential. To get some insight in what 

happens spectrally when we multiply two different time functions we will start with a 

simplified case first: let’s multiply two sinusoidal waves with different frequencies. 

Next, we can apply this knowledge to signals consisting of more sinusoidal 

components. The box called MULTIPLICATION OF TWO SINUSOIDAL WAVES shows that 

multiplication of two cosines of different angles (ω1t and ω2t) results in the sum of two 

cosines, one of an angle ω1t + ω2t and one of an angle ω1t - ω2t, resulting in the 

following waves: 

 𝑥𝐴(𝑡) = 0.5 ∙ 𝐴1 ∙ 𝐴2 cos{(𝜔1 + 𝜔2)𝑡} (10.1) 

 𝑥𝐵(𝑡) = 0.5 ∙ 𝐴1 ∙ 𝐴2 cos{(𝜔1 − 𝜔2)𝑡} (10.2) 

We can see that the original frequencies have disappeared and that only waves with the 

sum frequency and difference frequency have emerged. Their amplitudes are equal 

(both A1∙A2), regardless of any amplitude difference between the original waves. (The 

use of cosines instead of sines only means that a different position of the time origin is 

chosen, which simplifies the formula somewhat. Conceptually the sinusoidal waves 

MULTIPLICATION OF TWO SINUSOIDAL WAVES 

 

From our school trigonometry we may possibly remember the following formulas: 

cos(𝛼 + 𝛽) = cos𝛼 ∙ cos 𝛽 − sin 𝛼 ∙ sin 𝛽 

cos(𝛼 − 𝛽) = cos𝛼 ∙ cos 𝛽 + sin 𝛼 ∙ sin 𝛽 

Addition of the left sides of the equations must be equal to the addition of the right sides:  

 cos(𝛼 + 𝛽) + cos(𝛼 − 𝛽) = 2 cos 𝛼 ∙ cos 𝛽 

which can be rewritten as: 

cos 𝛼 ∙ cos 𝛽 =
1

2
[cos(𝛼 + 𝛽) + cos(𝛼 − 𝛽)] 

To apply this to sinusoidal waves of amplitudes A1 and A2 we substitute ω1t and ω2t for α and β: 

𝐴1 cos(𝜔1𝑡) ∙ 𝐴2 cos(𝜔2𝑡) =
1

2
𝐴1 ∙ 𝐴2[cos{(𝜔1 + 𝜔2)𝑡} + cos{(𝜔1 − 𝜔2)𝑡}] 

As the choice of the phase is irrelevant for the power spectrum when dealing with continuous 

sinusoidal waves we use cosines instead of sines to simplify the calculation. Had we used sines, 

then the formula would only differ as regards phase shift constants of π/2 radians: 

𝐴1 sin(𝜔1𝑡) ∙ 𝐴2 sin(𝜔2𝑡) =
1

2
𝐴1 ∙ 𝐴2[cos{(𝜔1 − 𝜔2)𝑡} − cos{(𝜔1 + 𝜔2)𝑡}] 

We can see that each result consists of one sinusoidal wave having a frequency which is the sum of 

the frequencies and one sinusoidal wave with a frequency which is their difference. The original 

frequencies have disappeared. 
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have infinite duration: they have always existed and will exist forever, and their position 

of origin is therefore not relevant.) 

 

DEMO10.1 multiplies a sine wave with a frequency of 300 Hz with a sine wave of 

1000 Hz (see also fig. 10.1). It plays the two original waves as well as the result one 

after each other, and displays the spectra. You will notice that in the resulting spectrum 

there are only a sum and a difference component (1300 Hz and 700 Hz respectively) 

while the original frequencies have disappeared. (This multiplication is an example of 

a non-linear process; that's why frequency components emerge which were not present 

originally. See the remarks about linearity mentioned in the box called LINEAR SYSTEMS 

in section 8.) 

 

Our next step is to multiply a sine wave with the triangular wave from section 4. In 

fig. 10.2 we can see that all 10 harmonics of the triangle spectrum are shifted to the 

right of the single frequency of 5000 Hz of the sine, whereas a mirrored copy of the 

triangle spectrum is placed to the left of this frequency. The sine frequency itself has 

 
 
 
Fig. 10.1. Multiplication of 300 Hz and 1000 Hz sine tones produces only a sum and a 
difference frequency. 
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gone, just like all original frequency components of the triangular wave. These 

frequency shifts should not surprise us because the sums and differences must occur for 

each of all frequency components of the waves. 

 

Fig. 10.3. Damped sine wave by multiplication of exponential waveform with sine wave 
of 5000 Hz, and spectra. 
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Fig. 10.2. Triangle wave from section 4 (top) multiplied with a sine wave of 5000 Hz 
(bottom), and spectra. 



55 

 

The same line of thought can be applied to the once-activated resonator: the damped 

sine wave output can be seen as the multiplication of a sine wave with a single 

exponential function (see formula 7.3 of section 7 about the resonator). As you may 

know from fig. 8.6 and 8.7 in section 8, the spectrum of this exponential function has 

the same shape as the envelope of the spectrum of the repetitive exponential but has an 

‘infinite number of spectral lines’. In other words: it is continuous. Fig. 10.3 shows the 

waveforms and spectra of this case. Again, we can see that around the 5000 Hz point 

on the frequency axis the (infinite number of) sum and difference frequencies are 

placed. Thus, when we multiply a signal consisting of an infinite number of sine 

components, and which therefore has a continuous spectrum, with a single sine wave, 

this continuous spectrum is shifted and mirrored around the single sine frequency in the 

same way as in the case of the separate harmonics that are shifted and mirrored around 

the 5000 Hz of fig. 10.2. Naturally, the result is also a continuous spectrum so the 

pertaining time function (i.e. the damped sine) is also once-occurring. 

 
 
Fig. 10.4. Top: waveform of sine wave of 1500 Hz amplitude modulated with sine 
wave of 200 Hz. Bottom: its spectrum. 
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When we multiply sine waves all original frequencies will disappear. Suppose that we 

want to multiply two sine waves and preserve one of the frequencies. We could do that 

by adding the wave to be preserved to the result: 

 𝑓(𝑡) = 𝐴 sin(𝜔𝐶𝑡) ∙ 𝐵 sin(𝜔𝑀𝑡) + 𝐴 sin(𝜔𝐶𝑡) (10.3) 

which can be written as: 

 𝑓(𝑡) = {1 + 𝐵 sin(𝜔𝑀𝑡)} ∙ 𝐴 sin(𝜔𝐶𝑡) (10.4) 

This can be seen as a substitution of the constant amplitude A of the function A sin (ωC t)  

by the function A{1 + B sin (ωM t)}. When ωC is much higher than ωM, like in fig. 10.2, 

it is easy to see that the value of amplitude A is varied in a sinusoidal way, so that 

formula 10.4 means amplitude modulation of one sine wave (the carrier ωC) with a 

second sine wave (the modulation ωM). Fig. 10.4 shows an example of this case. The 

frequency of the carrier is always much greater than the modulating frequency. 

If the modulation has zero amplitude (B=0) then what we have left is the unaltered 

carrier sine wave. In fig. 10.4 the amplitude of the carrier is 0.8; the amplitude of the 

modulation is 0.2. The modulation depth is therefore 0.2/0.8 = 0.25. In practice, this 

modulation depth is always less than 1. On the log scale you can see that the modulation 

components in this example are 18 dB lower than the carrier component. The amplitude 

of the modulation is 1/4 of the carrier amplitude which amounts to -12 dB. In the 

spectrum, however, the modulation is presented by two mirrored components (just like 

 
 
Fig. 10.5. Modulation instead of multiplication: triangle wave of 200 Hz from fig. 10.2 
applied as modulation of a sine wave of 5000 Hz, and spectra. 
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we saw when we multiplied sine waves) each with half the amplitude so that the 

modulation components in the spectrum are lowered by another 6 dB. You will see that 

the only spectral difference of amplitude modulation with multiplication is the presence 

of the carrier frequency in case of AM whereas this carrier is completely absent in case 

of multiplication. 

 

Naturally, instead of one modulating sine wave it is possible to apply a whole range of 

modulating sine waves with different frequencies. Again, they are all mirrored around 

the carrier frequency. Together they are called side bands. As an example, see fig. 10.5 

where we can see that all 10 harmonics of the triangle spectrum are shifted and mirrored 

w.r.t. to the single frequency of 5000 Hz of the sine. All original frequency components 

of the triangular wave have gone, while the sine frequency itself remains present now 

because of the amplitude modulation applied instead of pure multiplication. 

 

What purpose can this Amplitude Modulation serve? Instead of a fixed set of frequency 

components as the modulation, the varying components of speech or music can be 

applied. This makes it possible to modulate a carrier wave with speech or music signals, 

which is what happens in AM radio 

transmitters. The frequency 

components of the modulation are then 

changing all the time according to the 

varying spectrum of the speech or 

music sound (see fig. 10.6). The carrier 

frequency applied (fC) is very much 

higher than the modulation frequencies 

(for example 106 Hz) to enable the 

transmission of the signal over great 

distances by using a tuned antenna for 

the transmitter. The great advantage of 

modulation is the possibility to apply many carriers with different frequencies so that 

every transmitter uses its own frequency part without interfering with other 

transmitters. With your radio receiver you can tune its band filter to the transmitter of 

your choice. The receiver has a device to extract the original speech or music from the 

modulated signal (the detector or demodulator). A full discussion of demodulation 

systems falls outside the scope of the book. However, one demodulation method can be 

deduced from what we have learnt so far: multiply the modulated signal with a 

sinusoidal wave with exactly the same frequency and phase as the carrier. Filter out the 

sum frequencies with a simple low-pass filter and, hey presto! the original modulation 

signal emerges.  

 

Because the two side bands carry exactly the same information, it is possible to suppress 

one side band so that the transmitter occupies only half the bandwidth. This creates 

more space for other transmitters in the frequency range. This technique is called single 

side band (SSB). (You may ask: why not suppress the carrier as well? In fact, the carrier 

component cannot be missed because it is needed for the demodulation.) 

 
 

Fig. 10.6. AM radio transmitter 
signal. The varying spectrum of 
speech or music emerges as mirrored 
side bands. 
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There exist more modulation methods, like frequency modulation (FM) of the carrier, 

but we will leave this subject to be explained by the numerous books on radio and high 

frequency techniques. 
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11. ‘Negative frequencies’? 

 

Another thought experiment: let's multiply our periodical triangle wave again with a 

sinusoidal wave, but this time we will let the frequency of the sinusoidal decrease 

gradually. The effect on the spectrum is that the position of the triangle wave spectrum 

shifts to the left.  

 

 
Fig. 11.1. Spectra of triangle wave (top), wave multiplied with 3060 Hz (center) and wave 
multiplied with 3000 Hz (bottom). In the bottom spectrum the components 9 and 10 
coincide with components 7 and 6 respectively. 
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What happens when the position of a mirror harmonic passes zero frequency? We can 

see that in fig. 11.1 where the triangle sound has been multiplied by a 3060 Hz 

sinusoidal wave. (In fact, we here use cosines instead of sines which, as said before, is 

only a matter of choosing the zero point in time. Using sines instead of cosines in this 

procedure will be dealt with separately.) When we subtract the 9th and 10th 

component's frequencies, being 3400 Hz and 3800 Hz, from 3060Hz we get -340 Hz 

and -740 Hz respectively. They ‘fold back’ into the positive spectrum, of course, as 

there is no such a thing as a negative frequency... But now we multiply our triangle 

wave with a 3000Hz wave, so that the components which have been "folded back" 

coincide exactly with other components. Look at the 7th component to the left of the 

sine frequency (bottom part in fig. 11.1). This component is now positioned at 400 Hz. 

It should have a value of 31.4 dB, like all spectra showed earlier, but now it is increased 

to 35.4 dB, whereas its counterpart at the right of the sine frequency boundary still is 

31.4 dB. The only possible cause of this phenomenon is the ‘folding back’ of the 9th 

component which otherwise would be - 400Hz! 

 

 
 
Fig. 11.2. Two sine waves as vectors rotating in opposite directions. Cosines are added 
on the x-axis, sines are subtracted on the y-axis. 
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If we look at the sine wave construction with the rotating vector again from section 5 

(fig. 5.1) we realize that a negative ω means that the angle decreases with time and 

causes the vector to rotate in the opposite direction, as if the sine wave is played back 

to front.  But what if we play one sinusoidal wave in ‘normal’ direction and a second 

one in the opposite direction? Let us look in some more detail at the construction of, in 

this case, the cosine wave. In fig. 11.2 we can see that cosines are projected on the 

horizontal axis. If we let a second vector rotate in the opposite direction then this is also 

projected on the horizontal axis, and in the same direction. Therefore, if we add these 

vectors, which we should do when the component which is folded back coincides with 

the other component, we get one sinusoidal wave with an amplitude which is equal to 

the sum of the individual amplitudes. 

 

If we convert the values of the 7th and 9th component values into linear ones (by using 

the formula 2.5 from section 2) we can see that the 7th component of 31.4 dB equals an 

SPL value of 0.74 mPa (millipascal) and the 9th component of 26.7 dB, which folds 

back, has an SPL of 0.43 mPa. The sum then is 1.17 mPa. Converting it back to dBs 

again (with formula 2.5) produces 35.4 dB, which is exactly the value we can see at the 

400 Hz position! 

 

If the harmonics had been sines instead of cosines, the amplitudes should have been 

subtracted instead of added, which follows logically: two vectors rotating in opposite 

directions always produce projections on the vertical axis in opposite directions, as can 

be seen also in fig. 11.2. Therefore, in order to add them up, the projection of the 

backward rotating vector should be subtracted from that of the forward rotating one. 

 

It seems as if negative frequencies do exist! 

 

The lower the frequency of the sinusoidal wave the more components of the triangle 

spectrum will fold back. What if we multiply the triangle wave with a cosine wave 

when its frequency has become zero (which means a horizontal line at amplitude 1 

because cos (0) = 1)? We will then see only the right half of the former spectra because 

the peak is positioned at f = 0. We have arrived at the original spectrum of the triangular 

wave. But what happened to the left half? Apparently, it has folded back completely. 

But there is no difference between our triangle wave signals whether or not multiplied 

by a value of 1. We must conclude that each spectral component in the spectrum 

consists of a positive and a negative frequency!  

 

If we compare the levels of the triangle's spectral components after multiplication with 

the cosine wave with the levels of the original components, we can see that the 

components have become 6 dB higher than those of the original: the sum of the two 

equal components is two times as high as one component, and a factor 2 amounts to 6 

dB. 

 

For another demonstration of the implications of negative frequencies we can 

investigate the spectrum of the once-occurring damped sine wave, as shown in fig. 10.3, 
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in some more detail. When we look at this spectrum on a dB scale (see the black line in 

fig. 11.3) we can see that it is not symmetrical: the components of the lower side band 

have greater levels than those of the higher side band. In the figure the spectrum of a 

damped cosine is shown as well (red line). Here the opposite occurs: the lower side 

band levels are lower than the higher side band levels. From what is explained above 

we can conclude that these level differences are caused by the ‘folding back’ of the 

negative frequency components. In both cases the exponential envelope spectrum itself 

remains unchanged. Then the difference must be caused by the opposite sign of the 

negative counterpart of the sine spectrum w.r.t. the cosine spectrum, as shown in 

fig. 11.2. (In the spectrum the final result of the addition of frequency components is 

always displayed as its absolute value, or the log of the absolute value, as you will 

know.) 

 
 
Fig. 11.3. Spectra of damped sinusoids. Black: spectrum of damped sine. Red: 
spectrum of damped cosine. Both spectra contain sine and cosine components. 
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Fig. 11.4. All multiplication combinations of low frequency waves (left column) and 
higher frequency waves (upper row). Cosine components are black; sine components 
are red. 
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Now we must realize that the exponential envelope function is odd, so its spectrum 

contains cosines and sines, and the positive and negative sine components have 

opposite signs. This complicates the final levels of all coinciding components. Using 

similar procedures as in the box MULTIPLICATION OF TWO SINUSOIDAL WAVES from 

section 10, the resulting phases of all combinations of sine wave and cosine wave 

multiplications can be derived. See fig. 11.4 for an overview. Here the cosine 

components are presented in black and the sine components in red. (As can be seen, the 

multiplication of two sines results in cosines.) 

 

When we look at the separate sine and cosine components of the spectra of the damped 

sine and the damped cosine, we get something like fig. 11.5. (The spectral levels are 

drawn at a linear scale to distinguish negative from positive amplitudes.) The higher 

level of the components in the low frequency area of the damped sine compared to these 

of the damped cosine is caused by the cosine components of the damped sine spectrum. 

 

This example teaches us that the shape of the spectrum of a damped sinusoidal wave 

depends on the position in time of the multiplying envelope w.r.t. the phase of the 

continuous sinusoidal wave. In other words: it depends on the phase of the start of the 

damped sine wave. If the start occurs at a zero crossing of the sine wave, we get a 

spectrum like the black line in the figure. If the start occurs at a peak (positive or 

negative) of the sine wave, we get a spectrum like the red line. Other starting positions 

result in graphs somewhere between the green and red lines. In practical systems the 

produced damped sinusoids usually start from zero, not from the maximum amplitude, 

 
 
Fig. 11.5. Top: exponential envelope of damped sinusoids and its spectrum. Center: 
damped cosine and spectrum. Bottom: damped sine and spectrum. Cosine components 
in black; sine components in red. 
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so the damped sine represents the practical situations better than the damped cosine. 

The main issue here is to explain that the spectral differences between a damped sine 

and a damped cosine are caused by the opposite sign of the ‘folded back’ negative 

frequency components.  

 

We know that in reality, a negative frequency does not make sense. Ironically, nobody 

can hear if a sine wave is played backward or not. Is this a paradox then? Not really. 

Consider two cars moving at different speeds: v1 and v2. Speed v2 is 10 km/h greater 

than v1. This difference remains constant. (As a consequence, the distance between the 

cars increases continuously.) Now both cars limit their speeds at the same rate: they 

slow down at, say, 10 km/h per second. After some time, the speed of the first car will 

have become zero. The second car is still slowing down at the same rate. To keep the 

difference of their speeds constant, the first car will have to move backward. The same 

occurred in the beginning of this section when we multiplied sounds with a sine wave. 

When a frequency component of the sound ‘folds back’ it is actually running backward 

in time! The ‘folding back’ occurs because of the fact that only the positive frequencies 

are displayed in our spectra.  

 

We can prove this reversing of time with a practical example. We saw in section 6 that 

the Spectrum object in Praat contains sine and cosine values to include the phase 

information. We also know that: cos (ωt) = cos (-ωt) and sin (ωt) = -sin (-ωt). 

Consequently, if we change the sign of all sine values of a spectrum, its inverse Fourier 

transform back into sound will produce the original sound, only reversed in time. This 

is valid for all sounds: even if you have recorded a long story, made a spectrum of the 

whole sound, changed the sign of all sine values (the second row within the Spectrum 

object) and inverse transformed it to sound, the whole story would be played 

backwards. 

 

Thus, negative frequencies exist in reality if you see them as a way (maybe the best 

way) to spectrally express movements backward in time. It seems that there is much 

confusion about negative frequencies, probably caused by the fact that the word 

‘frequency’ does not allow for negative values in normal language. Many people think 

then that negative frequencies are caused by mathematical peculiarities and stem from 

the complex representation of spectra (explained in Appendix II) but there is no 

fundamental connection as may be clear from the description here. It is only a matter 

of shifting a frequency beyond the zero boundary to cover the opposite direction of 

movement. 

 

Anyway, the concept of negative frequencies can be seen as a very convenient way to 

describe many phenomena in the signal analysis field, as we will see. 
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12. Convolution in the frequency domain 

 

Now we know about negative frequencies, we can look again at the multiplying signals 

of section 10 from this new angle. The ‘mirror’ components of the spectra of all figures 

of this section stem from the negative parts of their original spectra! So, the 

multiplication of a signal in time with a sinusoidal wave only results in a frequency 

shift of the complete spectrum of the time signal, thus including the negative part. The 

amount of frequency shift is equal to the frequency of the sine wave. In fig. 12.1 the 

complete spectra of the triangle wave and its multiplication with the sine, as described 

in section 10, are displayed. Of course, the sine wave too has its negative counterpart 

in its spectrum which means that the complete set of harmonics of the triangle wave is 

also shifted in the negative direction. In practical spectra, the negative areas usually are 

not shown. However, when shifts are involved, i.e. when functions of time are 

multiplied, it will be obvious that the negative areas must be taken into account.  

 

Fig. 12.1. Spectra including their negative parts of triangle wave of section 10 (top), sine 
wave of 5000 Hz (center) and the multiplied waves (bottom). 

 

0 5000 10000-5000-10000

Frequency (Hz)

20

40

60

80

dB

0 5000 10000-5000-10000

Frequency (Hz)

20

40

60

80

dB

0 5000 10000-5000-10000

Frequency (Hz)

20

40

60

80

dB



66 

 

In our example of the triangle wave we can see that its spectrum has zero value at zero 

frequency. So, its mean is zero, as can be easily seen from its waveform. (In section 6 

this mean value or DC value is explained.) When the triangle wave would have had 

some mean value, the 0 Hz component had also shifted and the resulting spectrum 

would have had a component at exactly 5000 Hz as well. 

 

Naturally, apart from a limited number of spectral components like those of our 

generated triangle wave, this shifting mechanism as described applies also to the 

infinitely number of components of a continuous spectrum, as we have already seen in 

section 10 where the output of the resonator has been regarded as the multiplication of 

a sine wave with a once-occurring exponential function (fig. 10.3). 

 

Fig. 12.2. Sum of 16 sine waves of different frequencies (spectrum at top) multiplied by a 
time function of which its spectrum is displayed in the center. Bottom: the (positive part 
of the) spectral result. 

 

The next step we take is using a set of sine waves instead of a single one. It will be 

obvious that the spectrum of the multiplying function will be shifted around each 

separate sine wave frequency. Fig. 12.2 gives an example, using a multiplying function 

having a continuous spectrum. It may be clear that the complete continuous spectrum 

is copied at each spectral line while their heights are proportional to, or weighted by, 

the amplitude levels of the different spectral lines.  
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The arrow in the figure suggests a different manner to construct the result. The spectrum 

of the multiplying function is shifted from the negative end to the positive end of the 

whole frequency range of the line spectrum, using infinitesimal small steps. In each 

step both spectra are multiplied and the value is put into the resulting graph. (Actually, 

the multiplying function spectrum has to be reversed before the shifts: moving this 

spectrum from low to high frequencies cause the line spectrum components to shift into 

the multiplying function from its right side! Here, however, it makes no difference as 

the multiplying function is symmetrical in the frequency domain.)  

 

 
Fig. 12.3. When the spectral line distance is lower than the spectral range of the multiplying 
function there are overlapping spectral areas. 

 

When the frequency range of the spectrum of the multiplying function exceeds the 

spectral line distances, as we can see in fig. 12.3, there are some overlapping areas 

where components ‘belong’ to different sine wave frequencies. These coinciding 

effects can be seen in the lower part of the figure, as the non-zero areas between the 

sine frequencies and as the position of the peak at the center of the frequency range: it 

is higher than the highest of the two sine components close together, while its maximum 

occurs somewhere between the two sine frequencies. If components coincide, their sum 

depends on the phase relation, as we have seen in the preceding section. 

 

The effect in the frequency domain, when we multiply functions of time, is called 

convolution. The concept of convolution is one of the most important mechanisms in 

the signal analysis area. Understanding this mechanism opens the door to the 

explanation of most of the phenomena you will encounter when dealing with spectral 

analysis. 
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To get some feeling about the convolution mechanism in the frequency domain we may 

consider the swept and mirrored spectrum like that of the dotted line in fig. 12.3 as a 

tunable band filter function in the frequency domain which, in each tuning (shift) 

position, selects a small part of a whole spectrum, and suppresses all the rest (identical 

to shifting the tuning knob of an old fashioned AM radio receiver which selects only 

the small frequency part of one radio station from the total range). Although a filter is 

not the same as a signal (a filter 

does not produce signals) its 

function of frequency could be 

regarded as if it stems from a 

signal. The only difference, then, 

is the different scaling of signal 

amplitude and filter gain. 

 

Each point of this resulting graph 

then represents the multiplication 

of the whole line spectrum of the 

function and the filter function at 

that particular position of its 

center frequency. More 

accurately: each point of the 

resulting graph represents the 

sum of all frequency components 

that are encompassed 

(multiplied) by the filtered part. 

Of course, as we have seen in 

section 8 on filtering, we must 

apply vector multiplications of 

the spectra because of the phase properties. (In section 5 the sine wave is explained in 

terms of a rotating vector.) So, all multiplications of sinusoidal components must be 

done by applying the method as mentioned in the box MULTIPLICATION OF TWO 

SINUSOIDAL WAVES. (There is a mathematically more suitable method, however, 

which is described in appendix II.) Nevertheless, the graphs in this section show only 

the amplitudes. 

 

For now, it is important to conclude that multiplication in the time domain is equivalent 

to convolution in the frequency domain: 

 𝑥(𝑡) ∙ 𝑦(𝑡) ⇔ 𝑋(𝜔) ∗ 𝑌(𝜔) (12.1) 

The double arrow denotes the transform from time domain to frequency domain and 

vice versa. The asterisk represents the convolution mechanism. It is customary to use 

lower case symbols for functions of time and capitals for their frequency domain 

versions.  

THE CONVOLUTION INTEGRAL 

 

Each point of the convolution function is found by 

multiplying the one function with a frequency-shifted and 

reversed version of the other, and calculating (integrating) 

the encompassed area. The frequency shift is performed 

in infinitesimal steps over the whole frequency range.  

 

The position of the filter must be independent of other 

variables, like ω or t, so we need a separate variable for 

the frequency shift (a kind of shift domain). This is 

accomplished by the formula: 

𝐹(𝜔) ∗ 𝐻(𝜔) = ∫ 𝐹(𝛾) ∙ 𝐻(𝜔 − 𝛾)𝑑𝛾

∞

−∞

 

The asterisk denotes the convolution function and γ 

represents the frequency shift. The function F can be seen 

as the ‘radio band spectrum’ and the function H as the 

band filter as mentioned in the text. It is reversed in the 

shift domain by the minus sign. 

 

Naturally, multiplication of spectra implies vector 

manipulation: in each multiplication the phase has to be 

taken into account.  
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The box called THE CONVOLUTION INTEGRAL describes the mathematical procedure of 

convolution in the frequency domain. The procedure is exactly identical to the shifting 

method of the (reversed) filter graph as mentioned above. 
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13. Windows 

 

In section 7 we concluded that the output of a once-excited resonator can be seen as a 

multiplication of a continuous sine wave with an exponential function: 

 𝑥(𝑡) = 𝐴0 ∙ 𝑒
−𝛼𝑡 sin(𝜔𝑡) (13.1) 

From the preceding sections 10 and 12 we learned what the effect is in the frequency 

domain: the spectrum of the single exponential and the spectrum of the sine wave are 

convolved. The (continuous) spectrum of the exponential and its mirror version are 

shifted to a position around the sine frequency, just as displayed in fig. 10.3. 

 

We have to know more about the relation of the shape of a finite time function and its 

spectrum because in practice we do not have signals of infinitely length. Moreover, in 

cases of relatively long signals we want to be able to analyze smaller parts of it in 

succession, because often the waveform will not be steady all the time for long 

durations. This will be obvious for speech signals. It is very well possible to make a 

Fourier transform of a complete talk of half an hour or so but its spectrum will only 

present frequency amplitudes that are averages over the whole duration and we will 

have no spectral clue about the local time parts of the sound. Even if we take the phase 

information into account as well, it will give us no clue about the local spectral 

components because, as you will remember, the phase information only contains the 

phase of the origin of each component, whereas the component amplitude and 

frequency remain constant everywhere in time. 

 

For measuring “overall” properties of voices or musical instruments a display of the 

spectrum of a long-time recording, which is called a “long time average spectrum” 

(LTAS, see part B) can be of value, but often we need spectral data that are more 

detailed in time. 

 

So, in general, we need some selection of a part of the signal. As mentioned in section 6, 

when selecting parts of longer sounds, we have to make sure that we take exactly one 

F0 period or a multiple (if the sound is periodic) and choose the DFT then. Often, 

however, the sound is not strictly periodic (varying F0, noisy parts, sudden changes, 

etc.). Particularly in cases of speech sounds the ‘real periods’ may be hidden, and 

difficult to isolate. Generally, the only intention is to get spectral information over a 

specifically selected small part. As said before, if we simply take a DFT from an 

arbitrary part T of the sound we get frequency components 1/T hertz apart: the spectrum 

is sampled at these frequency intervals because the DFT ‘assumes’ that the selected part 

is repeated. But which spectrum is sampled? There must be an ‘underlying’ continuous 

spectrum if we regard our signal selection as once-occurring. 

 

If we use our ‘time-insertion trick’ from section 9 we can approximate this underlying 

spectrum very well. After we cut the part of the sound from which we want to get the 

spectrum we add a fair amount of zero sound so that its DFT produces a spectrum with 
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closely packed spectral components. In fig. 13.1 we see the continuous spectrum 

approximated in this way of 50 ms of a 490 Hz sine wave. Quite disappointing, as you 

will agree. We would like to see one peak at 490 Hz instead of all these side lobes. 

 

Fig. 13.1. Approximation of continuous spectrum of 50 ms of a 490 Hz sine wave. 
 
 

In fact, we multiplied a periodic sound with a rectangular window with a value 1 

within the desired segment and a value 0 outside it. So, what we want to find out is the 

spectral effect of this manipulation. But we know that multiplication of time functions 

means convolution of their spectra so that this spectrum must be the convolution of the 

underlying spectrum of the 490 Hz sine wave and the (continuous) spectrum of this 

rectangular window. Because the ‘spectrum’ of the sine wave consists of only one 

spectral line, the spectrum in fig. 13.1 must be a good approximation of the spectrum 

of the rectangular window, shifted to the right by 490 Hz. 
 

As mentioned in section 9 the Fourier integral can be used to calculate the exact 

continuous spectra of time functions and appendix II.3 contains the way to do this for 

the rectangular window, using complex numbers.  
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In fig. 13.2 this rectangular window spectrum is shown, together with its absolute value 

(generally, spectrum displays are independent of the sign) and the commonly used 

logarithmic scaled version. The ‘negative frequencies’ are shown as well. 

Theoretically, the positive and ‘negative’ frequency ranges both extend to infinity and 

are of course symmetrical. Now its shape closely resembles our continuous spectrum 

of fig. 13.1. The phenomenon of the left and right sides of fig. 13.1 not being 

symmetrical is caused by the ‘folding back’ of its negative frequency components, as 

explained in section 11. In fig. 13.2 there is no folding back because of the inclusion of 

the negative range in the picture. 

 

Fig. 13.2. Spectrum of rectangular time window with length T s. Top: ‘linear’ spectrum. 
Center: amplitude. Bottom: log scaled, maximum normalized to 0 dB. 
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The formula of this spectral function: 

 𝐺(𝑓) = 𝑇
sin(𝜋𝑓𝑇)

𝜋𝑓𝑇
 (13.2) 

shows that it is zero when f is a multiple of 1/T (because the sine of an angle of π radians 

or a multiple is zero) so that the ‘lobe width’ is 1/T Hz, where T is the window length.1 

At the center of the main lobe it has the value T which is only an amplitude scaling 

factor. This is the well-known sinc function which is short for sine cardinal. One 

should be aware on its influence on spectra: especially when there are more than one 

sine components in the original spectrum (and that's generally the case, of course) each 

sine component will have its ‘own’ side lobes and folding back components and they 

can interact heavily in unexpected ways. See fig. 13.3 where the continuous spectrum 

of 50 ms from a combination of three sine waves is shown. Here also the ‘folding back’ 

of the negative frequency components cause interaction of components. 

 

But what if an integer number n of periods of a sine wave fits exactly within the window 

length T so that the period of the sine wave is T/n? You will understand that it makes 

no difference for the shape of the continuous spectrum: the peak of the main lobe is 

positioned exactly at the sine wave frequency n/T and the side lobe width remains 

exactly 1/T Hz. The cause of the DFT of an integer number of sine periods producing 

only one clean spectral line at the sine frequency is that the DFT ‘samples’ the 

continuous spectrum at 1/T Hz distances, and all multiples of 1/T or n/T Hz fall exactly 

on the zero points of the sinc function except at the main lobe center where the value is 

positive! 

 

 
1  Obviously, the spectrum of the ‘very short pulse’ which was used in section 7 to activate the resonator 

is defined by this function. To approximate a flat spectrum in the range of interest, the first zero 

position at 1/T hertz should be sufficiently high. If we allow for a certain roll-off (say, 3 dB at 10000 

Hz), the maximum length of the pulse can be calculated by: fT = 0.443. So, then T should be no 

longer than 44.3 μs (microsecond). 

 
Fig. 13.3. Continuous spectrum example of three added sine waves, rectangular 
windowed. 
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You will remember that the exponential decaying sine wave can be expressed as a 

multiplication of a continuous sine wave with the exponential function (formula 13.1). 

From its continuous spectrum (as in fig. 10.3) we can conclude that it shows no side 

lobes and has only one peak. Therefore, using an ‘exponential window’ instead of a 

rectangular window seems to be advantageous. 

 

Fig. 13.4. Continuous spectrum of exponential window; peak normalized to 0 dB. 
 
 

Fig. 13.4 shows the continuous spectrum of this exponential window (as already 

indicated in section 11). We can see that the spectral width is quite substantial: the 

attenuation of frequencies beyond the 3-dB bandwidth is fairly gradual so that the 

selectivity is poor. In practice, therefore, this window can only be used to investigate 

the start of a signal spectrally (the transient). In addition, theoretically, the time function 

goes on to infinity and in practice it has to be truncated. The consequence of truncation, 

however, is an extra multiplication with a rectangular window which again introduces 

side lobes (although with lower amplitudes). We have seen this in fig. 9.2 of section 9: 

the ‘ripple’ in the spectrum is manifested by these side lobes! The lobes are 25 Hz apart, 

caused by the truncation at 40 ms. 

 

A much better window is the Gauss window, named after Karl Friedrich Gauss, a 

German mathematician (1777-1855). Although this window presents us with the same 

problem of ‘never becoming zero’, it has a better spectral selectivity and no side lobes, 

see fig. 13.5. In statistics this bell-shaped curve is known as the normal distribution.  
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If we scale its peak to 1, the Gaussian window formula is: 

 𝑓(𝑡) = 𝑒−𝛼
2𝑡2 (13.3) 

where the peak is centered at t = 0. Its spectrum from appendix II.3 is defined by the 

formula: 

 𝐹(𝜔) =
√𝜋

𝛼
𝑒−𝜔

2/(2𝛼)2 (13.4)  

 

Fig. 13.5. Top: Gaussian window. The linear scaled spectrum (mid) is also a gauss 
function. Bottom: spectrum on log scale (peak normalized to 0 dB). Scale factor p = √π /α. 
 

 

0

1

0.37

Time (s)

1/a-1/a 0

f(t) = exp(-a2 t2)

Frequency (Hz)

0 B-B 2B-2B 3B-3B 4B-4B 5B-5B 6B-6B

B

p

0

B2 = a2 · 2 ln(2) ¤ p2 f(w) = p · exp(-w2 ¤ (2a)2)

-40

-30

-20

-10

0

dB

Frequency (Hz)

0 B-B 2B-2B 3B-3B 4B-4B 5B-5B 6B-6B

B



76 

 

As you can see, this spectrum function is also a Gauss function and therefore completely 

‘side lobe free’. From the formula you can also conclude that ‘shortening’ the time 

function by increasing α means ‘broadening’ the spectrum and vice versa, just like we 

saw at the exponential decaying function. (The factor √π/α is only a scaling factor and 

has no influence on the function's shape.) 

 

Symmetry 

Recalling what is explained about symmetry in section 6 you will understand that all 

windows described so far, except the exponential window, are even functions. The 

result in the frequency domain is that only cosines exist. In appendix II.3 it is shown 

that in this case the time function and its frequency function are interchangeable. That 

means, if we regard the spectral function of, for example, the sinc function (top of 

fig. 13.2), as a sound instead of a spectrum, its Fourier transform will be perfectly 

rectangular. In other words, multiplication of a sound with this sinc function acts like 

an ideal low-pass filter. (Mathematically, ideal filters pass all frequencies within the 

pass band un-attenuated and completely block all frequencies outside that range.) In 

fact, the sinc function can be seen as the impulse response of the ideal low-pass filter. 

Of course, this sinc function is not a possible impulse response of physical filters in 

practice. This trick, however, is often used in digital filtering which will be described 

later. 

 

Fig. 13.6. Spectrum of Gauss window, truncated at 5% of max. value (left) and tampered 
after truncation (right). 

 

The Gauss window ‘never becomes zero’ so, in practice, it has to be truncated, which 

will cause side lobes. To limit the heights of the side lobes, sometimes the Gauss 

window is tampered (modified) as follows: truncate the function at the positions where 

the value is, say, 5% of the peak value, subtract this level from the function so that the 

start and end are zero, which eliminates the steps of the function, and finally multiply 

the function with 100/95 so that its peak is 1 again. This eliminates the side lobes not 

completely (as the tampered function is no real Gauss function any more) but it 

suppresses them noticeably. See fig. 13.6 for the effect on the side lobes. 

 

In attempting to overcome the problem of the side lobes many alternative window 

functions have been developed, all of them being ways to compromise for frequency 
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selectivity, time length and side lobe amplitudes. Fig. 13.7 shows Fourier transforms of 

some popular window functions. The Blackman and Kaiser windows have no fixed 

properties: they can be modified by using parameters to limit the main lobe width at the 

cost of suppression of side lobe amplitude, or vice versa. The relative selectivity of each 

window can be read from the position of the markers 2/T or -2/T where T is the length 

of the window time function.  

 

 
Fig. 13.7. Continuous spectra of some window types. The time lengths of all windows 
are equal to T. All dB values refer to the peak level of the rectangular window. 
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The importance of suppressing the side lobes can be demonstrated by an example. We 

will follow the same procedure in fig. 13.8 as in the example of the three sine waves 

signal of fig. 13.3, the only difference being the position of the rectangular window: on 

the right-hand side it is shifted to the left by 13 ms. The power spectrum should not 

change because only the phases of the components have been altered by the time shift. 

Compared to fig. 13.3 we see that the components remain in position but the shape of 

the spectrum has changed a lot. The ‘folded back’ components interact differently as 

their phase is altered by the shifted window position! Also, in fig. 13.8 (in the lower 

 
Fig. 13.8. Different selections of 50 ms of a signal containing 3 added sine waves, and 
their effects in the spectrum. Right half of the picture: selection window shifted 18 ms 
to the left. Top half of the picture: selections rectangular ‘windowed’ and their spectra. 
Bottom half: selections windowed with Hann window and spectra. A random position 
in the signal is marked as m to show the shift. 
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half) the signal is windowed with a Hann window instead. You will see that the spectra 

in both window positions are practically the same. The side lobe suppression by proper 

windowing greatly limits the interaction of the folded back components and at the same 

time it makes the spectral components much more visible, at the cost of a slightly wider 

main lobe. 

 

The number of window types that has been developed is overwhelming: only a small 

number is shown in fig. 13.7. Which is the best window to use? The answer (as always) 

depends on the purpose of your analysis. First of all, if the frequency components in 

the signal remain steady for a relatively long duration, you can apply a long-time 

window. The choice of the window type is then only a matter of side lobe roll-off 

because the main lobe is narrow enough. Any window will do, except, of course, the 

rectangular window and the Bartlett (triangular) window. (These two you should better 

avoid in all cases!) 

 

When the frequency components in the signal are fast varying (as in the case of the 

signal of a sentence of speech), the window length has to be a compromise. On the one 

hand you will prefer a short window moving through the signal, thus producing a 

spectral contour detailed in time. On the other hand, a short window will have a broad 

main lobe in its spectrum so that the frequency resolution is limited. Therefore, the 

window should offer both maximum selectivity and short length. In addition, the side 

lobes should be suppressed sufficiently. The Blackman, Gauss or Kaiser windows offer 

reasonable solutions. When the window is moved through a longer signal it is not 

necessary to truncate those windows that ‘never become zero’ (apart from the window 

positions at the start and end of the long signal). Then the Gauss window is superior to 

all others, and a good compromise can be made by choosing between frequency 

resolution (selectivity) and time resolution. In part B the sections about speech 

measurement explain some further complications in the spectral analysis of speech 

signals. 

 

In Praat, several windows are built-in to facilitate windowing of an extracted part of a 

signal. The Gauss (tamp) and Kaiser (α = 2) windows there are named ‘Gauss1’ and 

‘Kaiser1’ respectively. 

 

An extensive overview of many window functions and their properties has been 

produced by Heinzel, Rüdiger and Schilling [5]. 
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14. Convolution in the time domain 

 

We began all this about convolution and windows by multiplying in the time domain. 

Let’s now take the frequency domain as a starting point. We learned that the spectrum 

of the resonator output is formed by multiplication of the spectrum of the input (the 

train of short pulses, for example) and the filter function of the resonator. In the time 

domain representation of the output (as in fig. 8.6) you can see that the resonator is 

activated repeatedly at each position of a pulse. The damped sine wave of the resonator 

in a way has been copied to all periods of the pulse signal. All periods consist of the 

same damped sine of our resonator. Not surprising: the resonator is excited at every 

pulse. But this is exactly the convolution mechanism as described in section 12: shifting 

one function (in infinitesimal small steps) and multiplying it with the other in all 

shifting positions. DEMO14.1 shows what happens, applying small sequential steps of 

shifts in time. Here we can see also that, prior to the shifting, the damped sine 

necessarily has to be reversed in time (see also fig. 14.1). In each shift position the 

multiplication of the functions only produces values at the pulse positions.  

 

Fig. 14.1. Convolution of short pulses with a sampled sine wave. 

 

When the pulses are infinitesimally short, indicated in the top of fig. 14.1, there is only 

one value at each pulse; between pulses the values are zero. (This is a relatively simple 

case. The shift causes the resonator function being ‘scanned’ at each pulse.)  

 

If the fundamental frequency of the pulses becomes higher, there is not enough time for 

the resonator to come to rest before a new excitation occurs. In that case the damped 

sine of the resonator still has some amplitude and this will influence the waveform of 

the next period. When the steady state has been reached, all next periods become the 

same (because the state of the resonator at the start of the following periods has reached 

0

-1

1

0

Lag time



81 

 

an equilibrium). The influence of a period on the next one is constant from now on (this 

steady state is what you saw in fig. 8.7 in section 8 about filtering). 

 

Obviously, if the fundamental frequency of the pulses is so low that the amplitude of 

the damped sine is negligibly low before a new excitation occurs, the result is equal to 

repetitions of impulse responses of the resonator, and the spectrum is a sampled version 

of the continuous spectrum of the impulse response. In other words, a sampled version 

of its filter function. 

 

Fig. 14.2. Convolution of sawtooth wave with damped sine wave. 
 

 

Instead of very short pulses, if we apply a waveform of some duration (like a sawtooth 

wave, for example) we have a more complicated situation as fig. 14.2 shows.  

 

Obviously, the damped sine is not simply copied into each period because of the 

influence of the contents of the sawtooth wave on the result. To investigate in some 

detail what happens you may follow some sequential steps in the convolution procedure 

by running DEMO14.2 which works exactly like DEMO14.1, but now with a sawtooth 

wave instead of short pulses.1 

 
1  In the demos and figures the mean of the multiplied functions is shown. The math, however, uses 

the integral which calculates the total area of the multiplied functions. Strictly spoken, these mean 

values are only valid when the signal duration equals 1s. So, to be correct, all resulting values 

should be multiplied by the signal duration, which is only a matter of scaling. 
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Concluding, we can state that the effect of multiplying two functions in the frequency 

domain is that their respective time functions become convolved, simply according to 

the convolution mechanism, but this time in the time domain. 

 

The box called CONVOLUTION IN THE TIME DOMAIN describes the mathematical 

procedure of the convolution mechanism, which corresponds exactly to the frequency 

domain convolution found in section 10. Thus, multiplication in the frequency domain 

means convolution in the time domain: 

 𝐹(𝜔) ∙ 𝐻(𝜔) ⇔ 𝑓(𝑡) ∗ ℎ(𝑡) (14.1) 

Compared to formula 12.1 you will see the symmetry of the convolution: 

 

• multiplication in the time domain means convolution in the frequency domain; 

• multiplication in the frequency domain means convolution in the time domain. 

 

Fig. 14.3 depicts these symmetries in schematic form. The convolution process requires 

much computing power as in each shifting step the signals have to be multiplied and 

integrated. Usually therefore the signals are Fourier transformed (with the Fast Fourier 

Transform), then multiplied and finally inverse transformed back into sound. 

Obviously, the result is exactly the same. (Praat also uses this trick.) 

 

A practical example of convolution is presented by DEMO 14.3.1 You can hear the 

influence of the acoustics of a church space on the sound produced. (The use of 

 
1  The script uses a studio recording and an impulse response of the Open Air Library of the 

University of York, see refs. [8] and [9], respectively. 

CONVOLUTION IN THE TIME DOMAIN 

 

Each point of the convolution function is found by multiplying the one function with a time-shifted 

and reversed version of the other, and calculating (integrating) the encompassed area, just like 

convolution in the frequency domain explained before. The time shifts are performed in infinitesimal 

steps over the whole time range.  

Because the position of the shifted function must be independent of other variables, like f 

and t, we need a separate variable for the time shift (here called the lag domain). This is accomplished 

by the formula: 

𝑓(𝑡) ∗ ℎ(𝑡) = ∫ 𝑓(𝜏) ∙ ℎ(𝑡 − 𝜏)𝑑𝜏

∞

−∞

 

The asterisk denotes the convolution function and τ represents the time shift. The function f can be 

seen as the signal input to a filter and the function h as the impulse response of the filter. It is reversed 

in the lag domain by the minus sign. Seeing the convolution strictly as a function in the lag domain 

we can interchange the abscissa variables: 

𝑓(𝑡) ∗ ℎ(𝑡) = 𝑦(𝜏) = ∫ 𝑓(𝑡) ∙ ℎ(𝜏 − 𝑡)𝑑𝑡

∞

−∞

 

which is completely equivalent. The upper formula, however, is used most often.  
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headphones or earphones will demonstrate the effect optimally.) In fact, we can 

consider the acoustic properties of the room where the sound is produced as a filter 

which alters the signal of the sound source. The resulting signal is a convolution of the 

sound source signal with the impulse response of the room. You will hear a striking 

difference between a recorded sound in an anechoic room (which is a ‘dry’ recording, 

almost without any reverberation) and the same sound convolved with the impulse 

response of the church space. It sounds exactly as if the speaker were present there. 

This convolution with the impulse response of a room makes it possible to modify any 

‘dry’ recorded sound as if it was played in the room. In principle, the impulse response 

can be acquired by producing a very short pulse sound in the room and record the result 

at some listening distance from the sound source. In practice however, the energy per 

frequency is too low compared with that of the background noise. There are better ways 

to obtain the impulse response, like using electronically generated noise (the next 

section deals with the properties of noise) or swept frequency sinusoidal generation. 

How to extract the impulse response from these signals falls beyond the scope of this 

book. A practical method with a swept frequency sound source is described by Farina 

[3]. 

 

Reversely, the quality of a sound recording can be poor due to reverberation and 

frequency-dependent absorption by the interior of an inappropriate recording room. 

This unwanted filtering can be corrected to some extent by deconvolution. Now the 

spectrum of the signal is divided by the spectrum of the room (i.e. the spectrum of the 

impulse response). Finally, this resulting spectrum is reverse Fourier transformed into 

sound. In practice, the room spectrum can have values that are almost zero if sounds 

from different directions almost cancelled each other. So, the division by this spectrum 

may cause very high peaks and the reverse Fourier transform may produce dominating 

sine sounds. Many attempts to solve this problem are still not working very satisfying. 

 

Fig. 14.3. Relation between input, output and system, and their Fourier transforms. 
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When the impulse response is not known (of speech sounds for example), the 

deconvolution process is even more difficult. When one tries to distinguish between the 

source properties and filter properties from the resulting sound waveform (which is 

only available), the problems sometimes cannot be solved whatsoever, as we will see. 
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15. Noise 

 

As you may know, an electric current can flow through a conductive material, let's say 

a wire, because of the presence of free electrons in the material. A particular free 

electron, having the smallest possible negative electric charge, will not remain free, but 

when it has the chance will take the available space within a nearby atom (which will 

have had a positive electric charge (an ion)). When the electron is added to the atom, 

the charges of the atom and the electron cancel each other out, and the atom’s charge 

becomes neutral. In the meantime, another electron escapes from its atom, anywhere 

within the wire and recombines later with an atom with has a space available. This 

process has been going on for trillions of electrons everywhere in the material so that 

the total charge will be neutral. Stated differently: there is no voltage between the ends 

of the wire. However, if we ‘zoom in’ on the electrical voltage (by using an electronic 

amplifier) we see small random fluctuations of the voltage around the zero value (see 

fig. 15.1) caused by fluctuations of the number of free electrons.  

So, when a sound has been converted into its electrical representation, it will not be 

completely ‘clean’ but contain a (usually small) amount of noise as well. Therefore, we 

will look at the properties of noise. 

Because of the fact that the free electron's behavior is caused by the temperature of the 

material, the term thermal noise is sometimes used. Obviously, the resulting 

fluctuations will be completely unpredictable. One thing we know is that the mean 

amplitude is zero. Another thing we know is that large deviations from zero (positive 

or negative) will occur less frequently than small deviations because for large 

deviations there must be a great number of free electrons and a great number of positive 

ions (charged atoms) at opposite positions in the length direction in the material. The 

chance that this may occur will decrease with increasing deviation values. When we 

 
Fig. 15.1. Part of white noise and its Gaussian amplitude probability function. 
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construct a graph which displays the chance of occurring of amplitude fluctuations as 

a function of amplitude, we see the well-known bell-shaped curve, the Gaussian or 

normal distribution. Its 900-rotated version is also drawn in fig. 15.1. (It will look 

familiar to you: we have met this function as a window function in section 13.) For an 

obvious reason this type of noise is also called Gaussian noise.  

 

Naturally, the intensity of the deviations from zero will depend on a couple of things. 

First of all, as mentioned above, it will depend on the temperature of the material. 

Furthermore, the fluctuations can vary from extremely slow to extremely fast. 

Somehow this frequency range must be taken into account. Now the formula for the 

thermal noise intensity (power) occurring in an electrical circuit will be not completely 

surprising: 

 𝑃𝑁 = 4𝑘𝑇𝐵 (15.1) 

Here PN is the noise power; T is the absolute temperature in Kelvin, and B the choice 

of the frequency range (bandwidth) of the fluctuations which should be taken into 

account. The symbol k represents the constant of Boltzmann, being 1.38∙10-23, which 

relates the energy of moving particles to temperature 1. 

 

To express the noise in volts (the amplitude domain) we must realize that the voltage 

causes an electrical current through the conductor (the wire) and that the power is the 

product of voltage and current 𝑃 = 𝑉. 𝐼 (see the box OHM'S LAW in section 1). The 

current is the voltage divided by the resistance: 𝐼 = 𝑉/𝑅 which means that 𝑃 = 𝑉2/𝑅 

or 𝑉 = √𝑃. 𝑅. Combining this with formula 15.1 produces the formula for the thermal 

noise voltage produced by any electrical circuit: 

 𝑉𝑅 = √4𝑘𝑇𝐵𝑅 (15.2) 

Of course, this voltage is the theoretical rms (root mean square) value. In practice the 

mean must be taken over long times as the power of short time intervals varies a lot 

because of the unpredictability of the real fluctuations. In fig. 15.1 you can see that in 

general, the amplitudes remain within a limited area from zero. Although any amplitude 

is possible when the values are unpredictable, the chance that high deviations from zero 

occur is extremely low, caused by the exponential decay of the probability curve. In 

fact, the rms value is equal to the standard deviation of the Gaussian curve, like 

displayed in fig. 15.1. 

 

What can we find out about the spectral properties of this thermal noise? In fact, we 

cannot think of sine wave components at all: it would be extremely unlikely that at 

some time interval the fluctuations change like a sine wave. But if we are forced to 

transform the noise voltage into the frequency domain we define the noise being 

assembled by sine waves, no matter how many of them are needed. Then we can say 

that there cannot be a frequency which on average has a higher or lower amplitude than 

 
1 Numbers like 1.38 x 10-23 sometimes are notated as 1.38e-23. The e stands for exponent. 
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other frequencies: all frequencies have the same chance to occur even if their 

amplitudes are very low. In other words, the spectrum of this kind of noise on average 

must be a horizontal line at some (low) level. For the spectrum to have some relevance, 

the power of each point must not be zero. But then it would mean that the total power 

of the spectrum adds up to infinity because the number of points of the spectrum is 

infinitely high. This cannot be true in practice; therefore, we will break up the total 

spectral range in small spectral bands (or frequency bins) and estimate the average 

power in each band. To this purpose the term spectral density is used. The wider the 

bands, the higher the probability that frequencies within a band will occur.  

 

Now, if we make a spectrum of such a noise, taking a sufficiently long section to reach 

a reliable average, we get a straight horizontal line: the noise is white, named after 

white light which contains all wavelengths (however, not exactly in equal intensities). 

Fig. 15.2 shows spectra with 100 Hz bins of various lengths of white noise. The white 

noise sounds are repeatedly generated (eight times) and their spectra drawn on top of 

each other to show their variations. It is important to realize that the spectrum of a sound 

 
 
Fig. 15.2. Spectra of white noise consisting of 100 Hz frequency bins, repeated with 
newly generated noise and displayed on top of each other. Top: sound length is 10 ms; 
center: sound length is 100 ms; bottom: sound length is 1 s. 
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already has bins which are defined by its length: the DFT of, for example, a 0.1 second 

sound has spectral points that are 10 Hz apart. Applying 100 Hz bins for this spectrum 

will average only 10 points per bin. Analyzing noisy signals (fricatives in speech, for 

example, see section 21) therefore needs attention as regards to proper averaging. 

 

White noise is often artificially generated for measuring purposes. For example, the 

frequency behavior of signal processing equipment, like amplifiers and filters, can be 

estimated by feeding a white noise signal to the input and look at the spectra of the 

output. 

 

Naturally, some noisy signals may have spectra which are not flat. One type of noise 

that is widely known is pink noise. While white noise has a constant energy per hertz 

(on average), pink noise has a constant energy per octave. As the frequency range of 

each next octave is twice the range of the current one, its energy is proportional to 1/f 

which is equivalent to a roll-off of 3 dB per octave. This type of spectrum seems to 

apply to many natural sounds (like long term speech, heart beats, air flow, etc.). The 

reason why this is so has probably something to do with the fact that fast acceleration 

of material with a particular mass needs more (kinetic) energy than slow acceleration 

so that the sound intensity must decrease when the frequency increases, provided that 

the energy is evenly distributed. Many investigations on this subject are still ongoing. 

 

Another type of noise is brown noise which has a roll-off of 6 dB per octave. This is 

the result we get when white noise is integrated. The simplest electronic low-pass filters 

are integrating circuits, which probably explains why this type of noise exists. The 

practical value is limited. 

 

Noise types with opposite spectral slopes exist too: blue noise with a spectral increase 

of 3 dB per octave and purple noise increases 6 dB per octave. Other types of noise can 

have some spectral areas that are enhanced or attenuated, like grey noise which has a 

spectrum corrected for the human hearing sensitivity differences for different 

frequencies. For that purpose, its spectrum is multiplied with a reversed A-weighting 

curve (more of this curve in part B, section 27.4). 

 

You can run DEMO 15.1 to listen to examples of various types of noise. 

 

The unwanted noise generated in electronic amplifiers or within some types of 

microphones is very much like white noise, or like pink noise. That is not surprising 

because the necessary amplification of very small signals (from microphones or earlier 

recording media) has to be very high so that the thermal noise is highly amplified too. 

With the figure for signal-to-noise ratio (S/N) the sound quality as regards the noise is 

expressed in dB. Some practical aspects about this S/N ratio are mentioned in part B of 

the book. 
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16. Correlation 

 

In section 6 we learned that the magnitude of the Fourier components can be found by 

estimating the cross-correlation factor of the signal and each sine or cosine F0 multiple. 

With this wave comparison tool, we can do interesting things. Suppose we want to find 

a specific section of some duration within a long noisy signal (for example to know 

when a radar impulse echo was received back after sending it). The answer is: simply 

shift the pulse time function along the entire length of the noisy signal and calculate the 

cross-correlation factor at each position. A graph will emerge, displaying the cross 

correlation as a function of the time shift: this is the cross-correlation function (cc). 

At the position of the reflected radar pulse (the echo) a peak in this graph can be 

expected. See fig. 16.1 for an example of such a function. In the waveform of the 

receiver the reflection of the pulse is masked completely by the noise, as the center of 

the picture shows. From this cross-correlation the position of the reflected pulse can be 

estimated accurately. In the time lapse between the moment of sending the pulse and 

 
 
Fig. 16.1. Cross-correlation of radar pulse (top) with its reflection received in noise. 
The reflected pulse is not visible in the received waveform (center). After cross-
correlation the position of the reflected pulse can be estimated accurately (bottom). The 
pulse in this example is a short-windowed sine wave. 
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receiving its echo the wave will have been sent forward and then backwards. It will be 

clear then, that the distance from the transmitter to the obstacle can be found by 

applying the formula: 

 𝑑 =
∆𝑡∙𝑐

2
 (16.1) 

where d is the distance in m, Δt the time lapse and c the propagation speed of the wave. 

For sound waves in air c is 340 m/s, for sound waves in water c is about 1500 m/s. (For 

radar signals c is about 3.108 m/s.) 

 

Another example of a cc application is the determination of the angle of a sound source 

with respect to the position of two microphones. 

In fig. 16.2 this is shown schematically. The 

placement of sound source and microphones is 

seen from above. The two microphone signals are 

recorded as a stereo sound which preserves the 

time relation between the two sounds. The 

distance from the source to the right mic is shorter 

than the distance from the source to the left mic so 

that the right signal will be ahead of the left signal. 

Cross-correlation of the left and right signals from 

this stereo sound can accurately reveal the time 

difference. A practical example is shown in 

fig. 16.3. The sound applied is an arbitrary 

"rasping" sound which was recorded out of doors 

to prevent reverberation effects. In the figure you 

see that the waveforms of the left and right signals 

(upper and center part, respectively) do not show 

any resemblance so that it is impossible to 

determine the time shift of the signals by looking 

at the waveforms. From the cc graph, however, we 

see that the correlation has a pronounced 

maximum at -2.15 ms which means that the right 

sound was 2.15 ms ahead of the left sound. 

Fig. 16.2 shows that the sine of the angle φ is practically equal to (dL - dR)/dM when the 

distance from sound source to microphones is much greater than dM, the distance 

between the two microphones. We know that the time for the sound to travel the 

distance dL - dR  is equal to the time shift we see in the cc graph. The angle φ can 

therefore be found by using the formula: 

 𝜑 = arcsin [
∆𝑡∙𝜈𝑆

𝑑𝑀
] (16.2) 

where Δt is the measured time shift, vS the propagation speed of sound in air (340 m/s) 

and dM  the distance between the microphones (which was 1 m in this case). Using the 

values from this practical example gives us the angle φ: 0.82 radians or 47 degrees. 

 
Fig. 16.2. Determination of 
position of sound source (top 
right) in relation to two 
microphones (bottom). 

dM

dL dR




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Fig. 16.3. Cross-correlation of the left and right channel of an outside stereo microphone 
recording of rasping noise. The direction of the sound source can be determined from the 
time-shift (τ) of the position of the peak in the cc function.  

 

How did we arrive at these 

cross-correlation graphs?  

From what was said before, 

we know that each point of 

the cross-correlation function 

represents the cross-

correlation factor for that shift 

position. And each cc factor is 

found by multiplication of 

one signal with the other one, 

which is shifted, whereby the 

shift can be forward or 

backward in time. Now, that 

sounds familiar, doesn't it? In 

section 14 about convolution in the time domain we did the same after we reversed in 

time one function. Indeed, the only difference of correlation with convolution is 

omitting this reversion of one function. In the box called CROSS-CORRELATION you 

0 Left

T  = 0.1 st

0 Right

0

0-2.15-5-10-15 5 10 15

t  (ms)

cc

CROSS-CORRELATION 

 

Each point of the correlation function is found by multiplying 

the one function with a time-shifted version of the other 

function, and calculating (integrating) the encompassed area, 

just like the process of convolution discussed earlier before, 

leaving out the reversion of one of the functions. The time 

shifts are again performed in infinitesimal steps over the 

whole time range.  

We can simply modify the second formula from the 

CONVOLUTION IN THE TIME DOMAIN box, using the 

same shift variable τ again: 

𝑟𝑥𝑦(𝜏) = ∫ 𝑓(𝑡) ∙ ℎ(𝑡 + 𝜏)𝑑𝑡

∞

−∞
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can see that the formula for the cc function is equal to the convolution's formula, except 

for the opposite sign of the shift variable. 

 

When the correlation function is carried out on a signal correlating it with itself, the 

resulting function is called the autocorrelation function. We know how to do that now, 

but, what can we do with it?  

 

For an example of the application of autocorrelation (ac), let’s start with the top of 

fig. 16.4 where we see a part of a periodic waveform of a (speech-like) sound. Suppose 

we would like to measure the fundamental frequency (F0) of this part. We could extract 

it on sight from the waveform, if we measure the time interval of the period. But we 

must not be fooled: we must not simply take the distance between the highest peaks 

because we can see that that distance varies too much. We must look at the complete 

waveform to see what part of it is repeated as a whole. We can do that without actually 

knowing how our brains perform that task. So, using a method to measure the period 

automatically and reliably, demands an objective way to compare the different sections 

of the waveform. The obvious method, naturally, is using an autocorrelation of the 

sections. The bottom part of fig. 16.4 displays this autocorrelation function. It reaches 

its maximum at a shift of zero: of course, the parts are equal then. When the shift 

increases (or decreases in the other direction) a new peak will emerge exactly when the 

time shift is equal to one period. At each next shift of one period a new peak will 

emerge. These local maxima can be read from the waveform very easily as they stand 

out clearly from the other peaks, so that the F0 can be determined accurately.  

 

Fig. 16.4. Autocorrelation of a periodic sound, using a 30ms part of it. 

 

You may ask, "Why not take the spectrum of the waveform and estimate the lowest 

component?" Of course, you can do it like that. However, if the F0 is varying as a 

function of time (which, in the first place, is always the case in speech sounds) we want 

to select a small part of the sound in order to follow the F0 variations. You may 

0

T  = 30 ms

0

0

Lag (ms)
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remember from previous sections that the spectral bins have a width that is equal to 1/TI  

hertz where TI represents the length of the sound interval chosen. In the case of speech 

sounds, this interval should not comprise a much larger section than a few periods of 

the waveform, which means that the accuracy of the measurement from the spectrum 

is quite limited and will be much less than the accuracy of the ac. Another disadvantage 

of the spectral method is the possible presence of low frequency components (from 

‘airy’ speech or background noise) of the speech signal that may be weak and should 

not be considered as an F0 of the sound. The method of using the strongest spectral 

component cannot be applied here because the highest peak is not always the 

fundamental. 

 

As an example of the F0 measurement of a speech utterance using ac, see fig. 16.5. This 

method to measure the F0 as a function of time for speech sounds (the pitch contour) 

has been built-in in the Praat program.1 In part B of the book we will go into more detail 

about measuring the pitch contour. 

 

Fig. 16.5. Waveform of a spoken sentence with its pitch contour. Each point in the pitch 
graph is defined by the peak distances of the local autocorrelation functions. 

 

 

For a second example of an ac application, please run DEMO16.1. A fair amount of 

(white) noise is added to a sound containing three sinusoidal waves. (The example used 

here is a musical chord.) The noise intensity is greater than the intensity of the sine 

waves (the signal-to-noise ratio is -2 dB). You can hear the ‘clean’ version and the noisy 

version in sequence. After autocorrelation of the noisy signal with an arbitrary section 

of 0.1 s you can hear that the sound quality has improved greatly: the noise level has 

 
1  The word pitch refers to the subjective impression of frequency. The program Praat ignores 

possible perceived deviations from ‘real’ fundamental frequency values.  
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been suppressed substantially, whereas the sound of the chord remains practically 

identical to the clean version. The waveform, however, has been changed a lot. The 

difference, as you may know already from section 8 about filtering, is caused by the 

change of the phases of the frequency components. (See also fig. 16.6.) 

 

 

 

 

 
Fig. 16.6. From top to bottom: 200 Hz chord sound made of 4 added sine waves, white 
noise added, autocorrelation with a section of 0.1s of the noisy signal, ac wave 
convolved with noisy section.  
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As you can see, each period of the ac is symmetrical, as expressed by the following 

formula:  

 𝑟𝑥𝑥(−𝜏) = 𝑟𝑥𝑥(𝜏) (16.3) 

which means that the autocorrelation is an even function, and in its spectrum, as we 

learned from section 6, all sine components are zero if we define the time origin at a 

point of symmetry, i.e. at one of the peaks of the ac function. 

The last step of the demo takes the convolution of the ac result and the same noisy 

section we extracted before. If you now listen to the sound you will hear even less noise. 

What's more, the resulting waveform looks as if it has been preserved in its entirety. It 

looks the same as the clean chord signal. How is that possible? 

 

To explain this surprising result, we must return to the spectral properties. In section 14 

we learned that convolution in the time domain requires the reversing of one of the time 

functions. In the frequency domain the spectra are multiplied. When we multiply the 

spectra in the case of two equal signals, we know that each component of the spectrum, 

regarding as a rotating vector, is multiplied by itself. That means that the amplitude is 

squared and the phase angle is altered due to the changed ratio of x and y values (in fact 

the angle is doubled, which follows from the trigonometry). In section 11 we read that 

if we change the sign of all sine components of a spectrum, its time function runs 

backward. Consequently, if we do not reverse one of the signals, as occurs in 

autocorrelation, we actually multiply each rotating vector with an equal vector that runs 

in the opposite direction. (This is the complex conjugate. In appendix II this is explained 

 
Fig. 16.7. Top: waveform of chord with different spectral component magnitudes. 
Bottom: waveform after ac and convolution as done in fig. 16.6. 
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in more detail.) The result is that after spectral multiplication all amplitudes are squared 

and all phases are turned to zero. That explains the zero-phase waveform of the ac 

function. Now, in the last stage, if we multiply again with a normal spectrum with 

rotating vectors in the positive direction, which is equivalent to convolution, the 

original phases are added to all zero phases, so the original phase relations are restored 

completely. The amplitudes are again multiplied so that the final amplitudes are equal 

to the cube of the original amplitudes. 

 

Because all frequency components of the demo’s chord have equal amplitudes, the ratio 

of the component magnitudes will remain the same. Of course, if the amplitudes differ 

substantially, we would not be able to restore the waveform. See fig. 16.7 where the 

same autocorrelation/convolution combination is used for the chord with relative 

component magnitudes 1, 0.6, 0.2 and 0.5. 

 

The noise suppression method using autocorrelation is based on the fact that the 

individual spectral noise components are much lower in magnitude than the signal's 

components we are hoping to retain. When the magnitudes are squared (or cubed) the 

low-level components are weakened in favor of the high-level components. 

 

With this insight, it is easy to think of an alternative way for noise suppression, 

preserving the signal's phase relations. We can operate in the frequency domain: first 

we make a spectrum of the complete signal, then calculate the spectral component 

magnitudes, then multiply the cosine and sine components of the complete spectrum 

with the magnitude values. This will preserve the amplitude ratios of the sine/cosine 

 
Fig. 16.8. Noisy chord sound of fig. 16.6 (top). Noise suppressed by multiplication of 
its spectrum with magnitude values (bottom). 

0

Time5ms

0

Time5ms



97 

 

pairs so that all phases remain unaltered. The noise suppression will then be equal to 

that of the autocorrelated signal. Fig. 16.8 shows the result. Of course, this method also 

only works when the signal's spectral component magnitudes do not differ much, as the 

ratio of their magnitudes is altered due to the non-linear processing. For example, the 

ratio of, say, 5 and 2 is 2.5; after squaring, the ratio has increased to 25/4 = 6.25. (Also, 

when the magnitudes of the signal’s cosine and sine components differ much, the final 

phase will have been changed considerably.) The idea of modifying the spectral values 

dependent on the lengths (or magnitudes) of their vectors is known as Wiener filtering.  

The term filtering suggests some kind of linear function as you may remember from 

section 8. However, Wiener filtering is actually a non-linear process caused by the 

squaring of the magnitudes. The requirements for linear systems, mentioned in the box 

called LINEAR SYSTEMS in section 8, are therefore not met. 

 

For signals which are not steady (like speech, for example), Wiener filtering can be 

made to depend on the local spectra of the sound, using a moving window: the dynamic 

Wiener filter. Instead of simply squaring the magnitudes it is possible to use other 

functions which offer better compromises between noise suppression and signal 

component magnitude ratio distortions. In part B we discuss noise suppression in 

practice in some more detail. 
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17. Sampling of sounds 

 

Up to now we have dealt with signals that are continuous. This means that the signal 

value changes gradually and continuously as the time goes on. No matter how fast or 

how irregularly the value changes, given a specific time interval, the signal will have 

gone through all values between the 

maximum value and the minimum 

value within the interval. There are 

an infinite number of different values 

and an infinite number of different 

time points in each interval, no 

matter how short it is. Almost all 

phenomena in nature behave like this 

(temperature changes, light intensity 

changes, mechanical movements, 

etc.). So, do air pressure changes, 

which thus include sounds. The 

signals change analogous to the 

gradually changing phenomena. 

 

Signal analysis and processing being 

generally complicated, we will need 

to use a computer suitable for that 

purpose. Because the computer deals 

with numbers only, we must 

somehow convert the analog signals 

to numbers. We cannot store an infinite quantity of numbers in a digital machine like a 

computer1. Therefore, the signal must be sampled which means that successive 

amplitude values are measured at discrete points in time that are so near to each other 

that the signal is ‘followed’ with sufficient accuracy. All sample values then are 

converted to numbers by the ADC (analog to digital converter) and all these numbers 

are fed into the computer, together with the information that represents the pace of 

sampling, the sampling frequency. Now this sampling in time solves only part of the 

problem: we need only a limited number of samples to represent a specific signal but 

we still need an infinite number of possible values for each sample, as the signal can 

have any value between two different arbitrary values. So, we must not only sample in 

time but also in amplitude. The signal has to be quantized. Only then we have our signal 

made completely digital. We will discuss this amplitude digitizing problem later on. 

So, to see what ‘sufficient accuracy’ on the time axis is, we will assume for now that 

we can store the exact amplitude values.  

 
1 Theoretically there is no signal analysis or manipulation that cannot be done by analog electronic 

hardware or even an analog computer. The complexity of the electronics for performing some types 

of signal analyses or manipulations, however, would be extremely high and the problems with 

stability of values would be almost impossible to solve. With the digital computer there is virtually 

no limitation in accuracy and stability. 

 
Fig. 17.1. Sampling of sound in time. 
The analog sound is multiplied with a 
delta pulse series to get discrete values. 
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In fig. 17.1 we see a part of an arbitrary signal, and the result after sampling it in time. 

The figure shows that the process can be seen as a multiplication of the analog signal 

with a series of delta functions (Dirac pulses) with equal amplitude values (in section 8 

we saw this delta function concept as an excitation function of the resonator). The result 

of the multiplication is one number at each position of a pulse. Each number represents 

the amplitude of the signal at that position in time. What does that mean if we look at 

it in the frequency domain? We know that the spectrum of one Dirac pulse is flat and 

horizontal: all frequencies are evenly distributed. Repeating the pulse means that the 

pulse sound becomes periodic and that only multiples of 1/TS can exist in the spectrum, 

TS being the time between two adjacent pulse peaks. The spectrum then is also 

‘sampled’, but in the frequency domain: it consists of spectral lines, at a distance of 

1/TS , all of the same amplitude, and with nothing in between. We already saw all this 

in section 8. Multiplication in the time domain means convolution in the frequency 

domain (as explained in section 10), which implies that at each spectral line, sum and 

difference frequencies of the spectral line frequency and all spectral components of the 

analog signal will emerge. Consequently, the spectrum of the original sound, together 

with its mirror image, is repeated ad infinitum along the frequency axis.  

 

Fig. 17.2. Top: spectrum of sampled analog signal of properly limited frequency range 
where fs represents the sampling frequency and fN the Nyquist frequency (see text). Bottom: 
same, but with insufficiently limited frequency range: alias frequencies emerge. 
 

 

In fig. 17.2 a few of these adjacent spectrum-and-mirror sets are displayed. (Here the 

spectrum of the analog signal is shown as a limited frequency band within which all 

frequencies of the signals can occur.) Now you will see the limiting factor of sampling 

in time: the high ends of the spectra may interfere with the low ends of the next spectral 

set, thus producing shifted frequencies that are placed in the original spectral range 
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and which then may become audible, the alias components. So, the distance between 

the spectral lines of the delta pulse series must be sufficient to overcome this problem. 

 

In other words: the spectral range of the original signal should be limited to one half of 

the frequency range between two adjacent spectral lines of the pulse series spectrum. 

This range is equal to the fundamental frequency of the pulse series which is the 

sampling frequency. Therefore, the sampling frequency should be at least twice the 

highest frequency in the original sound. To put it differently: for a sine wave to be 

sampled without loss you need at least two samples per period.  

 

We have now proven Shannon's sampling theorem, also known as the Nyquist 

sampling theorem, simply by reasoning. Nyquist mentioned this theorem as early as 

1928 and Shannon proved it more mathematically in his 1949 publication. The term 

Nyquist frequency is commonly used for the highest frequency of a signal that can be 

sampled without aliasing, 

which therefore equals 

half the sampling 

frequency. Fig. 17.3 

shows what happens 

when a sine wave is 

sampled with a sampling 

frequency that is too low. 

The appearance of the 

alias frequency can be 

clearly seen.  

 

The fact that the upper frequency limit of human hearing is less than about 20 kHz 

(kilohertz) means that the minimum sampling frequency for a sound of good quality 

should be at least 40 kHz. To avoid the sampling of too high frequencies of sounds the 

analog signals must always be low-pass filtered to attenuate the frequencies above the 

Nyquist frequency to an acceptably low level, which is known as pre-filtering. In 

section 8 about filtering you read that the slope of the filter always takes some 

frequency range: it cannot be made infinitely steep. What's more, the steeper the filter, 

the longer the reaction time, as mentioned at the end of section 8. Most signals are not 

steady and may change very rapidly, which means that the filter slope steepness should 

be limited. Therefore, the sampling frequency should be chosen sufficiently higher than 

the Nyquist frequency. In practice, however, this guard band (the frequency range 

allocated to the slope) can be relatively small (say, a few kilohertz) thanks to the 

development of sophisticated linear phase filters that have a constant time delay for all 

frequencies. The subject of analog linear phase filters falls outside the scope of the 

book. Suffice it to say that the commonly used sampling frequency in audio equipment 

is 44100 Hz or 48000 Hz, so that their frequency range is sufficient for high quality 

sound. 

 

 
Fig. 17.3. Appearance of alias frequency by 
undersampling of sound in time.  
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How can we, after the signal processing activities we carried out in the computer, 

transfer the digital signal to its analog version to make it audible? We cannot simply 

convert the numbers in 

the computer to voltages 

and feed them to an 

amplifier and 

loudspeakers. First of all, 

the sequence of voltages 

must be fed into the 

amplifier with the proper 

timing, which means that 

we must feed the voltages 

in exactly the same pace 

as the sample frequency 

by the insertion of a 

period of time between 

the successive amplitude 

values. Only then the 

frequencies will be correct. What to do with the voltage during these time insertions? 

If the voltage is zero then, theoretically, the amplifier will only receive voltages during 

infinitesimally short times so that the result is zero. Moreover, the frequency range of 

the amplifier and speaker would be too limited to process very short pulses.  

 

In fact, we need an ideal low-pass filter to limit the repeated spectra of the sampled 

signal to the Nyquist frequency (see fig. 17.4). In the time domain this means a 

convolution with a sinc function, as we have seen. This results in a sinc function 
sin(𝜋𝑓𝑠𝑡)

𝜋𝑓𝑠𝑡
=

sin(𝜋𝑡/𝑇)

𝜋𝑡/𝑇
 at each sample position, which is weighted with the sample’s value. 

We can conclude from the sinc formula and the figure that the zero points of the sinc at 

a specific sample coincide exactly with all other samples so that each sinc is 

independent of all others. Each sinc curve contributes to the values between the samples 

and the sum forms the continuous time function version of the sampled one. This is 

known as Shannon’s reconstruction theorem.  

 

Because of the fact that the sinc function theoretically runs from  to  it has to be 

truncated in practice (and preferably windowed as well). Therefore, because we need 

to use an analog filter, the complexity of performing sinc filtering is the reason that this 

method is not used in practice. A more practical solution is to sustain the voltage value 

of a sample until the next sample arrives. The signal will then look like the ‘staircase’ 

wave in fig. 17.5. (Because of the straight lines between successive values this is often 

called zeroth order hold, to distinguish it from other, higher order functions which are 

curved.) 

 

− 

 
Fig. 17.4. Reconstruction of analog signal by ideal 
low-pass filter. In the time domain the samples are 
convolved with the sinc function of the filter. 

Frequency

0 fs 2fsfN

dB

0
0-T-2T-3T T 2T

Time



102 

 

 To investigate its 

implications, we can see 

this signal as the 

convolution of two signals: 

one is the sampled signal 

with zeros between the 

samples, the other is a 

single pulse with duration 

of the sample time TS, as 

also displayed in the 

figure 17.5. Therefore, 

according to section 14 

where this convolution in 

the time domain was 

explained, to get the 

spectrum of the staircase 

wave we must multiply the 

spectrum of the sampled 

signal and the spectrum of 

the single pulse which is a 

sinc function. The zeros of 

the sinc function are 

positioned at multiples of 

1/TS and coincide exactly 

with the sampling 

frequency multiples. The original signal's spectrum is positioned in the range from 0 to 

the Nyquist frequency and repeated in the next spectrum-and-mirror image sets which 

are positioned around all zeros of the sinc function, see fig. 17.6. (The symmetrical 

negative frequency part of the spectrum is not shown, as we deal with power spectra.).  

 

The obvious thing to do now is to low-pass filter the signal to suppress all frequencies 

higher than the Nyquist frequency to block their way to the input of the amplifier and 

 
Fig. 17.6. Spectrum of sampled signal with sustained sample values. Spectral sinc 
function of single pulse shown in grey for comparison. (Scaling by multiplication 
results in a vertical shift on the log scale.) 
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Fig. 17.5. Top: properly timed values of sound 
samples. Bottom: each sample value is sustained 
until the next sample occurs. This can be seen as a 
convolution with a single pulse, its width being 
equal to the sample interval (center). For 
comparison, the original analog signal is shown in 
grey.  
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speakers. Although the higher frequencies are not audible for humans, most amplifiers 

will not behave linearly for very high frequency components which will produce 

unwanted audible shifted frequencies (called intermodulation distortion which will be 

described in part B). The low-pass filter needed, apparently, is identical to the low-pass 

filter used for the digitizing of the analog signal. Here, however, the filter is not applied 

for limitation of the original signal's spectrum (it was already limited before it reached 

the ADC) but to filter out the higher components that emerge by the nature of the 

sampling of the digital version of the sound. This is called post filtering. 

 

Obviously, this pre-filtering and post-filtering must be done by using analog 

electronics. At the computer's input the signal only becomes digital after sampling by 

the ADC (analog to digital converter) and at the computer's output the filter is applied 

after the signal is made analog with a DAC (digital to analog converter). This pre-

processing and post-processing of the signal is done in the sound card of the computer 

or in a separate ADC/DAC converter unit that is connected (digitally) to the computer. 

 

One small problem still remains: as can be seen in fig. 17.6 the higher frequencies 

within the range from 0 to the Nyquist frequency are somewhat attenuated compared to 

the lower frequencies, caused by the shape of the main lobe of the sinc function. This 

roll-off (attenuation) is not dramatic: less than 4 dB for the Nyquist frequency. (This 

can be calculated from the sinc spectrum formula 13.2 by substituting 1/(2T) for f.) The 

highest frequency of the signal's range is lower because of the necessary guard band, 

allocated to the low-pass filter. For example: if this guard bandwidth is 10% of the 

Nyquist frequency the attenuation is at most about 3 dB. If we want to treat all audio 

frequencies equally, however, the frequency response of the DAC should be flat and 

horizontal. One solution is to high-pass the signal in its sampled state using a digital 

filter1 with the right frequency response that compensates for the attenuation of the 

higher frequencies, the other is to perform this compensation using an analog high-pass 

filter connected with the output of the DAC. Because the amount of roll-off is not much 

of a problem, some computer sound cards do not compensate for this at all.  

 

In practice there is no need to bother with this pre- and post-filtering: all the necessary 

electronics is included in the computer's sound card or converter unit. In order for us to 

understand the principles of conversion from analog to digital and vice versa, however, 

an explanation of why we need to filter is necessary. 

 

Now we know about the limitations of sampling in time. We still have to look at the 

necessary sampling in the amplitude range, as mentioned earlier. The amplitudes cannot 

be represented by exact values because that would require numbers with an infinite 

number of decimals, or in computer language, an infinite number of bits. We must 

accept some inaccuracy which means we will end up with some discrepancy between 

 
1 The name digital filter represents a special type of filtering, possible by the mere sampled state of 

the signals, rather than the ‘classic’ filtering of the sampled versions of the analog signals. This type 

of filters is described later on. 
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the real value and the value of its nearest higher or lower number, thus allowing for a 

specific minimum step in the amplitude range.  

 

In fig. 17.7 the analog signal 

of fig. 17.1 is converted to a 

signal with a limited number 

of possible amplitude values, 

in this case 4 positive and 4 

negative values and one for 

zero. The result consists only 

of amplitude values that can 

be represented by the 

numbers available. The 

difference with the real 

signal, the error signal, is 

also displayed (with its 

amplitude enlarged three 

times). It is obvious that the 

discrete value nearest to any 

analog signal value differs 

half a step at most, so that the 

amplitude of the error signal 

is always equal to half the 

step value.  

 

If we sample the signal in 

time, we know that its 

maximum amplitude error is also always a half step, no matter at which points in time 

where we sample the signal. Fig. 17.7 also displays the sample errors.  

 

The error signals look like noise with limited amplitude. In fact, for truly periodic 

analog signals the error spectrum is related to the periods of the analog signal in a 

complicated way but the average spectra of these error sounds are very much like white 

noise. Mostly, signals in practice are not strictly periodic so that there exists no relation 

between the original signal and the error signal. The amplitude of the error signal can 

then be regarded as being completely unpredictable. To distinguish this type of noise 

from thermal noise the term sampling noise is commonly used. 

 

To determine what error is acceptable, we can express the rms value of the sampling 

noise in relation to the rms of the analog signal: we would like to know the signal to 

noise (S/N) ratio. We know that the error amplitude will never exceed half the step 

value but we also know that every value between zero and the step value has the same 

probability of occurrence1. 

 
1   Strictly speaking, this is only true when the signal’s amplitudes are evenly distributed within the 

steps it covers. 

 
Fig. 17.7. Top: limited number of possible 
amplitude values. Original analog signal shown in 
grey. Center: amplitude error signal (enlarged). 
Bottom: sample value errors (also enlarged). 
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This distribution of values is 

called random uniform. 

For calculating the rms 

value of our error signal we 

should square each 

amplitude value, take the 

mean and then its square 

root (the box RMS of ERROR 

SIGNAL explains that the 

rms value is the amplitude 

step divided by 2√3). In our 

example the step value is 1/4 

of the maximum signal 

amplitude, AMAX. When, for 

example, the signal is a sine 

wave, its rms value is AMAX 

divided by √2 (as explained 

in section 5). The signal-to-noise ratio is therefore: 

 

 𝑆/𝑁 =
𝐴𝑚𝑎𝑥/√2

𝐴𝑚𝑎𝑥/(8√3)
= 4√6 (17.1) 

We can conclude that the maximum signal to noise ratio of an amplitude sampled sound 

is equal to  if m is the number of possible amplitude steps. The total number of 

steps needed, however, is twice as high because of the negative part of the analog signal, 

plus one step for zero. When the number of steps is much higher we may ignore this 

extra single step so that we can write: 

 𝑆/𝑁 =
𝑛√6

2
 (17.2) 

where n is the total number of steps for the complete (peak-to-peak) signal. 

The S/N value 4√6 from our example we can express in dBs using the formula 

20∙log(4√6). The result is about 19.8 dB which is not much, compared to a good quality 

sound intensity range of 90 dB or so. From formula 17.2 we can calculate that for a 

90-dB signal-to-noise ratio, n should be about 25820. If the analog sound voltage, for 

example, has a maximum amplitude of 1, the 25820 voltage steps must cover a peak-

to-peak range of 2 volts. One step is then less than 2/25820 volt, or 77.5 μV (microvolt). 

In our decimal number system, we can see that the number precision for this example 

of sound sampling requires 5 digits. As you know, the numbers in computers are binary 

where only two symbols for a digit are used (0 and 1) instead of 10 symbols. The binary 

equivalent for the decimal number 25820 is 110010011011100 which comprises 15 

digits (15 bits). For practical reasons in programming and electronics the number of 

digital digits always is a multiple of 4 so that actually the number of bits applied in 

sound cards and almost all audio equipment is 16. If all possible numbers within this 

6m

RMS of ERROR SIGNAL 

 

Theoretically, we can put all absolute error amplitude values 

in order of magnitude. The result is a triangle function because 

the amplitude distribution is randomly uniform: y = Ax, where 

x = 0...1, A being the error amplitude. To calculate the root 

mean square value we first square the triangle function to get 

its power: 

𝑃(𝑥) = 𝐴2𝑥2  (x = 0 ... 1).  To determine the overall power, 

we must calculate its mean which needs integration: 

𝑃 = 𝐴2 ∫ 𝑥2𝑑𝑥
1

0
.  Evaluation leads to: 𝑃 =

1

3
𝐴2 

For the rms value we take the square root: 𝐴𝑅𝑀𝑆 =
𝐴

√3
.  

A is equal to half the step value of the amplitude sampling so 

that we can write: 

 𝐴𝑅𝑀𝑆 =
𝑠𝑡𝑒𝑝

√3
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range are used (which amounts to 216) the maximum S/N ratio is about 98 dB, more 

than enough for good quality sound. (See part B for a practical discussion about S/N 

ratio.) 

 

Table 17.1. 4-Bit example of different codes for ADC: binary offset (BO), two's 
complement (TC) and signed magnitude (SM). 

 

The analog signal having a positive and a negative part, how are negative voltages 

represented by binary numbers? The first method that can be used is shown in the 

column marked BO of table 17.1 where a 4-bit code is used. In the first column the 

numbers simply run from the maximum negative amplitude to the maximum positive 

amplitude. The zero value of the sound is then 1000, halfway the number sequence. 

This is why this kind of coding is called binary offset, the offset here being 1000. It 

would be practical, however, to represent 0 volt by the digital number 0. This is possible 

by applying the coding from column two. Compared to binary offset, the most left bit 

(the most significant bit or MSB) is inverted here so that 0 volt is coded as 0000. This 

coding is called two's complement and is commonly used in computers and all digital 

audio equipment. One of the advantages is that the code of negative values can be 

achieved by simply counting the digital numbers back from zero, which can be practical 

in digital electronics. The general name for this audio coding in computer files is PCM 

(Pulse Coded Modulation). 

 

Many different coding systems have been developed. In fact, any coding can be used 

provided that it is applied consistently in all signal analyses and manipulations within 

one system. As an example, a third method is shown in the next column. Here the 

magnitude of the sound is represented by the three bits at the right of the codes and the 

sign of the sound wave is represented by the MSB (here 1 for positive and 0 for negative 
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values). This is called signed magnitude. It is sometimes used in stand-alone digital 

electronic equipment for its symmetry: for inverting the value, simply the sign bit needs 

to be changed. 

 

Because the smallest step of the amplitude is equal to the value of the bit most to the 

right (the least significant bit or LSB) of the code, the amplitude step is often referred 

to as LSB. 

 

It is important to realize at this stage that the commonly used number representations 

in computers have a much greater precision than the 16 bits of the sound values. For 

calculations, analyses and processing the integer numbers have 32 bits or 64 bits which 

cover the ranges 0 to 2.1∙109 and 0 to 9.2∙1018 respectively. Apart from that, in the 

computer real numbers are also used (which are not limited to the integer ranges), by 

applying floating point arithmetic, a subject that this book does not cover. However, 

the sample values coming from the sound card, or from a sound file, usually have a 

maximum precision of 16 bit1, covering the range of numbers from 0 to 65535. 

 

Now that we know how the analog signals are represented in the computer we should 

consider a few of the consequences. The next examples are illustrations of these 

consequences. 

 

 
Example 1. 
 

Even when the sampling frequency and number precision are sufficiently high for a 

proper audio frequency range and S/N ratio, some effects may surprise us. Have a look 

at fig. 17.8, where a sine wave is generated with a frequency of 400 hertz with a 

sampling frequency of 44100 Hz. Its period is 2.5 ms. When we take 6 complete periods 

of the sound the total length is exactly 15 ms. Its DFT therefore should show only one 

component at 400 Hz. but the DFT picture shows many spectral components that spread 

over the whole frequency range and are quite high around this frequency. (The 

components are multiples of 66.7 Hz, being the bin of 15 ms signal length, but the 

program interpolates the values in between). In the lower part of the figure, the same is 

done, but now with a fancy sampling frequency of 41600 Hz. Its DFT looks correct: 

only one component emerges at 400 Hz. How is that possible?  

 

Let's look at the continuous spectrum of a once-occurring signal of, for example, three 

sine periods of 300 Hz, see fig. 17.9. The DFT of this signal produces only multiples 

of 100 Hz which all are zero, except at the center of the main lobe which produces only 

one component at 300 Hz, a mechanism already mentioned in section 13. 

 
1 Some sound cards or other digital audio units are equipped with 24-bit precision ADC and DAC 

converters. In part B is explained why this precision is unnecessary in practice. 
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Fig. 17.8. Six whole periods of a sine wave of 400 Hz and its spectrum. Top: sampled with 
44100 Hz, bottom: sampled with 41600 Hz. 

 

Sampling of this signal at, for example, 1500 Hz repeats the spectrum with its mirror 

image around this sampling frequency and around all multiples of the sampling 

frequency. You can see that the DFT components (the multiples of 100 Hz) of this 

sampled sound coincide exactly with all zeros of the repeated spectra as well (and are 

positioned at the centers of the main lobes, of course). So far so good. If, for example, 

instead of 1500 Hz we applied 1750 Hz as sampling frequency, all repeated spectra with 

their zeros would shift a factor of 1750/1500 to the right and the DFT multiples do not 

necessarily coincide with these zeros any longer. Because the area of the side lobes of 

the sinc function is so broad (theoretically it is infinite) alias frequencies emerge 

everywhere at the DFT multiples and also in the range from 0 to the Nyquist frequency 

(spectral leakage). Therefore, the sampling frequency should be a multiple of the DFT 

bin (here 100 Hz). Indeed, in fig. 17.8 the bin is 1000/15 Hz and the second sampling 

frequency (41600 Hz) is a multiple of this bin, the first sampling frequency is not 

(44100 divided by 1000/15 is 661.5). 
 

In practice, when sound is selected (perhaps taken from a longer sound) for analyzing 

its spectrum, the DFT bin width (which is 1/T if T is the signal part's duration) can be 

of any value, and the sampling frequency will not necessarily be a multiple of the bin 

width. To avoid the spectral leakage to some extent one should multiply the signal 

selection with a window that has low side lobes (Blackman, Kaiser) or no side lobes at 

all (Gauss) as described in section 13 on windows, of course at the cost of frequency 

resolution due to the spectral width of the window. 
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Fig. 17.9. Influence of sampling frequency on spectral leakage. Top: once-occurring signal 
of three periods of 300 Hz and its continuous spectrum (green). The DFT contains only a 
300 Hz component. Center: same signal sampled with 1500 Hz. The repeated spectrum 
around the first harmonic of the sample frequency (red) causes no spectral leakage in the 
DFT. Bottom: signal sampled with 1750 Hz. The repeated spectrum (red) causes spectral 
leakage in the DFT.  

 

In general, the frequencies of the components in the signals under consideration are not 

known so that a requirement to select an exact integer number of periods is not practical. 

The spectral leakage that emerges when the selection does not contain an integer 

number of periods is explained in section 13. Avoiding leakage caused by this 

phenomenon needs proper windowing in the first place. 

 

Another way to suppress the effect of side lobes is to select a long section of the sound 

so that the side lobes are very narrow and will vanish for the most part, even when still 

close to the spectral components of the signal. Of course, this option is only valid for 

signals of which it is known that the components are steady (machines, musical 

instruments with sustained tones, etc.). For speech, for example, we mostly want to 

analyze short time parts and then windowing is inevitable. 

 

 
Example 2. 
 

The precision of the numbers in the computer is much higher than the 16-bit precision 

of the sound format mostly used. Almost all programs for signal analysis use this high 

precision for manipulation and calculation of the sound samples. When, for example, a 
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sound is generated in these programs the result contains sample values with this high 

precision. When the resulting sound is saved as a sound file with 16-bit samples, 

however, this high precision is lost.  

 

Fig. 17.10. Limited quantization precision of 16-bit sampling. From top to bottom: 
-  Spectrum of 1second sine wave of 1000 Hz with amplitude 0.1, sampled 
   with 44100Hz, generated in computer.  
-  Spectrum after saving in 16-bit samples and reading back the sound again. 
-  Spectrum after same procedure, now with 50000 Hz sampling. 
-  Same as previous one, now a priori windowed with a Hann window. 

 

 

Fig. 17.10 displays the spectrum of a signal generated in the computer with Praat (a 

1000 Hz sine wave for 1 second with amplitude 0.1 and a sampling frequency of 44100 

Hz). The visual dB range is extended to 150 dB and even on this extended scale its DFT 

shows a nice single component at 1000 Hz. (The choice of the frequencies and time 

ensures that no spectral leakage occurs.) After saving this sound as a standard format 
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sound file (which uses 16-bit precision), and reading it back to the program again, its 

spectrum shows a sample noise level with its peaks about 95 dB lower than the signal 

peak, spread over the whole frequency range (22050Hz, being the Nyquist frequency). 

The only cause of this can be the limited precision of the 16-bit sample numbers. Now 

the same is done for a sampling frequency of 50000 Hz. The choice of this sampling 

frequency, which is a multiple of the signal frequency, causes the samples within each 

period of the 1000 Hz sine wave to be placed on identical time positions. Fig. 17.10 

shows the result: instead of the white noise of the former example, all odd multiples of 

1000 Hz occur, of which the peaks are about 85 dB lower than the signal peak. Here 

the sampling noise results in a waveform distortion (apparently the sampling inaccuracy 

is symmetrical with respect to the zero line so that only odd harmonics occur, see 

section 6 about symmetry).  

 

The rms values of both sample noise types are equal, as the noise level is determined 

by the 16-bit precision and the signal level, but the spectral peaks of the odd harmonics 

are about 10 dB higher than those of the other -white- noise.  

 

Obviously, the white type of sample noise is preferable, so that in this respect it seems 

advantageous to apply a sampling frequency that is not a multiple of the signal 

frequency. Mostly, however, one must adhere to a standard sampling frequency for 

compatibility. A better strategy is to window the signal before saving it as an audio 

signal with some window other than the rectangular one. The bottom part of fig. 17.10 

shows the spectrum of the same signal, now windowed with a Hann window. The 

sample noise looks much more like white noise and the odd multiples of the signal 

frequency are gone. Moreover, the sample noise peaks are about 107 dB lower than the 

signal's peak level. Thus, here is another reason to window the signal selections. It is 

important to bear in mind, however, the necessity of a priori windowing of the signal, 

which is possible because of the generation of the signal within the computer. If the 

signal were saved unwindowed, then read-in again and windowed, it would give no 

improvement. This is caused by the fact that the a posteriori windowing leaves the 

waveform shapes unaltered: it only multiplies by factors. All waveform sampling 

inaccuracies remain at exactly the same positions in the waveform so that in our 50000 

Hz sampling example the waveform distortion remains the same. This means that 

windowing of a selection of a sound already recorded will NOT improve the S/N ratio. 

(But windowing remains necessary for the other reasons explained previously.) 

 

 
Example 3. 
 

When the amplitude of the sound generated in the computer is low, the S/N ratio of the 

sound, saved as a sound format file, lowers too. In the last example the amplitude is 

0.1. In Praat the value 1 means full scale (maximum amplitude) so that only one tenth 

of the total number of steps is used. The magnitude of the steps remains the same which 

causes a decrease of the S/N ratio with 20 dB. In a 16-bit format the S/N ratio then 

becomes 78 dB instead of 98 dB. In general, one must be aware of the fact that the 
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absolute quantization error amplitude is constant and therefore independent of the 

signal amplitude. In part B of the book there is more about the practical aspects of the 

S/N ratio. 
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18. Digital filters 

 

Once we have our sounds in digital form in the computer, we will be able to perform 

all kinds of analyses and manipulations in a much more flexible way compared to 

analog processing. For example, Fourier transforms and correlations would be almost 

impossible in analog electronics. In former days, approximations of Fourier transforms 

were done by narrow band filtering. The development of analog filtering in its long 

history has reached a high level and can be done in sophisticated ways. Nevertheless, 

the problems of stability when steep slopes or very narrow bands of the filter functions 

are involved, remain. 

 

In digital form the signals can be analyzed and manipulated using a vast number of 

methods and with stability factors that at the moment are some thousands of times better 

than that of analog electronics because the only source of instability is the computer's 

number precision, which in principle can be raised at will1. Additionally, the filter 

properties that are possible in digital form greatly surpass the analog filter properties. 

Also, all (linear) signal processing can be done in the time domain as well as in the 

frequency domain. 

 

We have already seen the convolution mechanism in the time domain using small steps 

in section 14 (DEMOs 14.1 and 14.2). Theoretically we need infinitesimally small 

steps. In our computer the smallest possible steps are equal to the sampling interval, as 

there is no information between the sample positions. The convolution is carried out 

sample by sample. Obviously the same applies to autocorrelation and cross-correlation: 

the mechanisms are similar. 

 

Filtering in the time domain can be done, as explained in section 14 and before, by 

convolution of the signal with the filter's impulse response. In digital filter jargon this 

(sampled) impulse response is called the filter kernel. 

 

The relative simplicity of performing the digital signal manipulations in the time 

domain offers a big advantage of digital filters over their analog counterparts. In 

addition, the achievements of digital filters can reach high levels. For example, look at 

the performance of the low-pass filter and high-pass filter of fig. 18.1. 

 

The low-pass filter is realized by defining a sinc function as impulse response, which 

was already mentioned in section 6 about even functions. As explained in appendix II.3, 

for even functions the time function and its Fourier transform function are 

interchangeable. So, the spectrum of a rectangular pulse being a sinc function, a sinc 

function in the time domain causes a rectangular function in the frequency domain 

which is an ideal low-pass filter. 

 
1  As later to be explained, so-called recursive digital filters, however, need a very high number 

precision as these filters are based on feedback of former values which multiplies the existing 

number inaccuracy. 
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Because of the fact that the side lobes of a sinc function spread out in time from -∞ to 

+∞ it has to be truncated in practice. This example uses an impulse response of 0.5 s 

duration and is overall windowed with a (tampered) Gaussian window so that the side 

lobes of the sinc function gradually reach zero amplitude at the left and right edges.  

 

You can see that the ratio of pass band and stop band levels is enormous: about 200 dB 

which is equivalent to 1010 to 1. A ratio like that is completely unnecessary in practice: 

It outranges the human ear dynamics with a factor 10000 and no electronic audio 

equipment could process a signal ratio like that. Needless to say that, in practice, a filter 

like this is not realizable by analog electronics (which, however, is no problem because 

nobody needs it). 

 

The high-pass filter in the figure uses a modified sinc function in its kernel. In fact, it 

is a combination of an all-pass filter and an inverted low-pass filter. Fig. 18.2 shows 

the working principle. The ‘diff. amp’ outputs only the difference between its inputs. 

 

An all-pass filter has an impulse response which is a delta pulse because its spectrum 

is formed by a straight horizontal line. This is not surprising if you look at the time 

domain as well: if you shift a delta pulse through a signal, its convolution is equal to 

 
 
Fig. 18.1. Very high performance low-pass (left) and high-pass (right) digital filters 
realized by applying windowed sinc impulse responses. The high-pass filter combines 
an all-pass filter (one sample of value 4) with an inverted low-pass filter.  
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the signal itself (remember the 

convolution mechanism with a short 

pulse in section 14). In the sampled 

signals a delta pulse means that the kernel 

consists of one sample having the value 1 

and all other samples having the value 0. 

The combination of the two filters can be 

applied within one filter kernel. In the 

high-pass filter impulse response of 

fig. 18.1 you see the addition of a single 

value in the center added to the inversed 

sinc function. (For the stop band of the 

high-pass filter it is necessary that the all-

pass filter and the inverted low-pass filter 

cancel each other, which requires the scaling factor of 4 in this case.) For exact 

canceling of the outputs of the two filters in the stop band it is crucial that their phase 

difference is zero. For analog filters, this requirement would be almost impossible to 

fulfill; for the digital filter this is quite trivial: there is no phase shift, only a constant 

response time for all frequencies.  

 

Of course, filters with slopes like these will have very long response times: here the 

impulse response used has a duration of 0.5 seconds. That is always the price to pay: a 

great resolution in the frequency domain means a poor resolution in the time domain 

and vice versa.  

 

Because of the windowing of the impulse response this kind of filters is called 

windowed sinc filters.  

 

The time domain way of filtering (i.e. the convolution of the input with the filter’s 

impulse response) lends itself perfectly for the real time filtering of long signals. Real 

time means here that the filter produces its output at the same speed as the samples of 

the input signal enter the system. Of course, there will be a delay caused by the length 

of the impulse response but the computer is fast enough to calculate the result of an 

incoming sample of the input signal before the next sample in time occurs so that the 

output rate (samples per second) can be equal to the input rate. Generally, the filter’s 

impulse response duration for many filters used in practice is not more than a few tens 

of milliseconds so that it seems as if the variations of the result follow the input signal 

immediately. 

 

The filters described so far compute the output from a number of input sample values. 

Each new sample at the input shifts the calculation of the new sample at the output from 

a set of input samples that is shifted one sample further: the oldest sample is abandoned 

and the newly entered sample is included in the calculation. Sometimes partial results 

of calculation on the intermediate samples can be used for computation of the next 

output sample to limit the calculation steps in the filter algorithm. Let us take a simple 

 
Fig. 18.2. High-pass filtering by 
(in-phase) subtraction of low-pass 
filter output from all-pass filter output. 
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example of such a filter that is very suitable for application of this idea: the moving 

average filter (see fig. 18.3). 

 

Each sample of the output of this filter is computed by taking the mean of the current 

input sample and a number of preceding input samples. Averaging over 5 samples, for 

example, is defined by the formula: 

  (18.1) 

where y is the input, x the output and n the rank number of the incoming sample. If we 

define m as the number of samples to be averaged the moving average filter can be 

generally defined as: 

  (18.2) 

From fig. 18.3 you will recognize this filtering as a convolution of the input signal with 

a rectangular window. Therefore, the filter spectrum is the sinc function. So, in some 

sense it is the opposite of the windowed sinc low-pass filter. The frequency resolution 

is poor but the time resolution is optimal. Looking at formula 18.1 we can now write 

the next sample rank as n+1: 

  (18.3) 

Compared to formula 18.1 you can see that 4 out of 5 preceding input sample values 

are re-used. One value (the oldest) is abandoned and the new input sample is added.  

 

Instead of adding up all 5 samples again, we can use the preceding output value yn if 

we subtract this old sample value xn-4 and add the new one xn+1: 

  (18.4) 

For any number of samples to be averaged the general formula for the filter kernel 

remains equally simple: 

  (18.5) 

where m is the number of samples averaged. If, like in this filter example, besides input 

samples, one or more previous output samples are used for estimation of new output 

samples, the filter is called recursive. 
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Fig. 18.3. Moving average filter. From top to bottom: a noisy chord sound is low-pass 
filtered one, two and three times respectively, by averaging 15 samples (0.34 ms) within 
the moving block. Right part: the resulting impulse responses for one, two and three filter 
runs. 

 

 

In fig. 18.3 the moving average filter is applied to a noisy sound (the chord sound from 

section 3 with added white noise). The delay of the filtered sound is quite low thanks 

to the short impulse response of the filter (here only 0.34 ms), while the noise 

suppression is quite reasonable. When m is the number of samples averaged, the high 

frequency noise components are suppressed by the factor √m.  

 

The figure also shows the effect of filtering a second time and a third time. Each run 

suppresses the noise by the same factor. When the number of filtering repetitions 

increases the resulting impulse response approximates a Gaussian function1 and the 

 
1  It can be proven mathematically that the sum (or mean) of a sufficient number of random equally 

distributed values approaches a “normal distribution” or Gauss function. 
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spectral lobes are gradually suppressed. Naturally, the resulting delay becomes greater 

(each added repetition multiplies the previous delay by √2). Multiple filtering with this 

filter is sometimes preferred over a single convolution with a Gaussian approximation 

or other window function thanks to the low “computation cost” which is independent 

of the kernel length. This makes this filter suitable for fast signal processing (like 

graphical signal manipulations). 

 

In the reality, a filter will only be able to respond from the moment the input signal 

starts. In other words, the filter is causal. Our moving average filter gives the first 

proper output value after m input samples have occurred, which causes a delay equal to 

the impulse response time. The input signal present in the computer’s memory provides 

the opportunity to shift the output signal ‘back in time’ relative to the input signal. In 

this filter case, the averaging occurs over m/2 preceding samples and m/2 next samples. 

Therefore, digital filter kernels are usually centralized so that there is virtually no time 

shift between corresponding input and output samples. Of course, the reaction time 

remains the same; it is only distributed symmetrically around the time positions of the 

input samples. The requirement for this symmetry is that the number of kernel samples 

must be odd in order for it to have a central sample. Our formula for the moving average 

filter for a centralized kernel is thus slightly modified: 

  (18.6) 

where p = (m-1)/2,  q = (m+1)/2 and m is an odd number. 

 

As mentioned already in section 8, a symmetrical impulse response around t = 0 

produces only cosine components so that it is a zero-phase filter. So, the filter kernel 

according to formula 18.6 is a zero-phase filter. When the kernel is symmetrical but the 

center is shifted to the left there is a constant delay which implies that the filter is a 

linear phase filter. (A constant delay means a phase which increases linearly, 

proportional to increasing frequency.) When the form of the filter kernel is 

asymmetrical around its mid position it is a non-linear phase filter. Obviously linear 

phase filters and non-linear phase filters both have sine and cosine components in their 

spectra. 

 

When we omit the subtraction of older samples, we simply add all sample values: 

  (18.7) 

Because there is now no need to refer to older x values we can apply this cumulative 

addition of sample values to an existing array of samples so that it is modified “on the 

spot”: 

  (18.8) 

(It is customary that the y variables refer to the output sample array and the x variables 

refer to the input array. In this case the input values are copied into the output array 
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prior to the processing of the contents.) Of course, this formula should not be regarded 

as a pure algebraic relation (in that case the conclusion would be that ) but it 

means that in each step the value of yn-1 is added to the former value of yn. To avoid 

unlimited increase of the sum value (the more samples in the signal, the higher the sum 

may become) we have to divide the sum values by the sample frequency to make the 

function independent of it. This makes it equivalent to the sample-by-sample 

integration of the y function. (Integration being an estimation of waveform areas, the 

computed values depend on the time step length, i.e. the sample frequency, and have to 

be multiplied by the sample interval which is the same as dividing by the sample 

frequency.) So, the new sample values in formula 18.8 must be divided by the sample 

frequency: 

  (18.9) 

which transforms the array with y values into its integral function.  

 

Using a similar reasoning the formula for differentiation of values in an array with 

samples turns out to be: 

  (18.10) 

The integration and differentiation methods described here are very fast as they work 

within the arrays that contain the input values. The original data are lost so that it is 

necessary to copy the data array before starting the integration or differentiation 

process. This method of signal manipulation within the data array is called in-line 

processing. In general, however, digital filters will read values from the input array and 

place the result in the output array. 

 

The general formula for a recursive filter can thus be stated as: 

  (18.11) 

By convention the coefficients of the inputs are represented by a’s and the coefficients 

of the outputs by b’s. In this format the formula for the integrator, for example, 

becomes: 

  (18.12) 

where a0 = 1/fs and b1 = 1.  

 

Let us now have a look at the in-line integrating filter  and activate it with 

a unit pulse (so, y0 = 1 and all next samples are zero). If we change b1 to a value lower 

than 1 we only use a part of the older y value. It will be clear that each next output 
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sample value will become the value of its predecessor multiplied with b1 so that an 

exponential relation exists between sample number and value: 

  (18.13) 

For  the result is shown in fig. 18.4. Because parts of former outputs are used 

for computing the new output, this impulse response is indeed infinitely long. Hence 

this kind of filters is called Infinite Impulse Response (IIR) filters, as opposed to the 

windowed sinc and the moving average filter mentioned before, which are Finite 

Impulse Response (FIR) filters. In fact, 

recursive filters are usually IIR filters 

because the feedback of parts of former 

output values to the input causes an 

endless process. The recursive moving 

average filter is an exception, the only 

reason being that exact values of former 

samples are subtracted. 

 

If b1 < 1 the function will decrease 

exponentially and approach zero. If 

b1 > 1 the function will “explode” to 

infinity. We see that a value of b1 

between 0 and 1 will produce an 

exponential decaying function as impulse response of the filter. Its spectrum we have 

already seen in section 13 about windows (see fig. 13.4). As a filter, this works as the 

simplest possible low-pass filter. The order of the filter is 1, which refers to the number 

of sample steps back in history (m = 1 in this case).  

 

An example of an order-two digital filter is the recursive version of our familiar 

resonator filter. If we define the resonance frequency as fr, its bandwidth as B, and the 

sample frequency of the kernel as fs, the filter can be defined by the following formula: 

  (18.14) 

where  and . For a resonator filter with 

1000 Hz resonance frequency and 50 Hz bandwidth, for example, b1 should be 1.9727 

and b2 should be -0.9929 when the sample frequency is 44100 Hz. (The reason that the 

values for B and fr are expressed as parts of the sample frequency is that the formulas 

like 18.14 refer to sample intervals instead of seconds.) Because the constants b1 and 

b2 can be estimated in advance, the filtering itself requires only two multiplications and 

two subtractions per sample which means very low computation costs. Compared to a 

non-recursive filter which convolves the signal with a damped sine wave kernel (which 

has to be truncated in practice) this recursive version is much more efficient. IIR filters 

generally have high execution speeds because of their low computation costs. 
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How can we estimate the values of the necessary coefficients like b1 and b2 from a 

desired filter function? For this purpose, the tailor-made z-transform can be used. 

Unfortunately, the mathematics necessary for understanding this transform is not very 

simple. It requires at least calculation with complex functions. In appendix IV the 

z-transform is explained in some detail. Its global principle is based on the following 

way of reasoning. 

 

As you learned when the resonator was explained, its spectrum shows a peak at the 

resonance frequency. When the impulse response, which is a damped sine wave, has a 

low damping α, the peak in the spectrum becomes high and narrow, and a high damping 

causes a low and broad peak. Now the clever thing is that the spectrum of any filter can 

be seen as having been assembled by a set of resonators, each contributing to a peak in 

its spectral function. So, the spectral filter components are damped sine components 

instead of continuous sine or cosine components. The filter’s impulse response is then 

a combination of damped sine waves with various resonance frequencies and damping 

factors, called the poles. In the same way a Fourier transform component is defined by 

frequency and phase (or sine and cosine values), the z-transform components are 

defined by frequency and damping. This means that z-transform components have 

starting points in time as opposed to Fourier transform components, which are 

continuous. Mathematically, one spectral peak consists of two poles in a complex pair 

which is explained in appendices III and IV.  

 

An example of a 10-pole low-pass filter is shown in fig. 18.5. It is a so-called Chebyshev 

filter, as it is based on the work of Chebyshev, a Russian mathematician (1821-1894). 

The spectra of the 5 individual peaks are displayed as well. The multiplication of these 

5 specific separate pole pairs results in the straight horizontal line in the pass band1. 

Compared to the windowed sinc low-pass filter from the beginning of this section this 

filter does not come near its performance as regards the frequency response. The slope 

of this filter is ‘only’ about 120 dB per octave. The delay, however, is about 1/25 of the 

windowed sinc’s.  

 

This example shows also that a higher order filter function (order 10 here) can be broken 

down to lower order sections. The z-transform mathematics available is able to define 

the relation between the filter transfer function and all recursive a and b coefficients 

and can be seen as a great tool for dealing with the complexity of this digital 

manipulation.  

 

In addition to poles, zeros can also be applied in the z-transform. Together with the 

poles, they can be used to design any practical filter, including notch filters with highly 

suppressed outputs at specified frequencies. Explanation of further details about the 

 
1  In fact, in this example a very small ripple of 0.5% of the amplitude in the pass band is allowed for, 

which is not visible in the picture on this amplitude scale. It is very well possible to make this ripple 

zero, at the cost of steepness of the curve. Then the filter is a Butterworth filter, named after an 

English engineer who published the math in 1930. 
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mathematics will need complex representation of signals and transfer functions, which 

is explained in the appendices II and III. 

 

In the beginning of this section, the zero-phase possibility by convolution with a 

symmetrical filter kernel was explained. Theoretically, in the case of IIR filters, the 

impulse response is infinitely long, and in practice much longer than the IIR filter 

kernel. Nevertheless, there is a possibility to realize zero phase filtering with IIR filters. 

If the sequence of all rank numbers of the samples is reversed, which means playing it 

backward in time, the phase is opposite in sign compared to the non-reversed filter. A 

cascade of these two filters, therefore, cancels all phases resulting in zero phase. The 

magnitude is the square of the magnitude of one filter. Because the signal (or chunks 

of a longer signal) is held in the memory of the computer, the two filters can be run one 

after the other. Finally, the square root of the result can be taken to scale it (or their dB 

values halved). 

 

Another digital filtering subject worth mentioning is the possibility of custom 

designing a filter by defining the desired frequency response directly in the frequency 

domain. Any practical filter function defined in this way has its own impulse response: 

it is the inverse Fourier transform of the filter function. We can use this impulse 

response as a digital filter kernel for convolution with the signal which we want to filter. 

So, when we have, as an example, a bizarre filter function like in fig. 18.6 we take its 

 
 
Fig. 18.5. Low-pass 10-pole Chebyshev filter (red line) as a result of cascading five 
second order filters, having one pole-pair each. 
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inverse Fourier transform and use it as a digital filter kernel. There is a complication, 

however. Because of the fact 

that the filter function shown 

refers to the magnitude only, 

the phase is not defined. The 

inverse Fourier transform 

then regards the function as a 

zero-phase filter with only 

cosine components. The 

inverse transformed time 

function is therefore 

symmetrical around sample 

zero as you can see in 

fig. 18.6. (The ‘negative’ 

time samples wrap around.) 

To use it as a manageable 

filter kernel we should shift 

all samples so that this zeroth 

sample is placed in the center. 

In programming terms: it is 

rotated to the right or left. As 

you now know, the only 

effect is a filter output delay 

of half the kernel length.  

 

The second complication is 

that the digital representation 

of the filter function in the 

computer has to be time-

limited so it cannot be a 

continuous function: the 

frequency step (the frequency bin) has to be defined. If we set it to 1 Hz, for example, 

the reverse transformed time function has a duration of 1 s. (It sets also the theoretical 

lowest frequency limit to 1 Hz.) The higher the resolution in the frequency function the 

longer the kernel length. In practice, the length can be reduced by truncation and 

windowing, just as in the case of the windowed sinc filter described above. This is done 

in fig. 18.6. The kernel length is reduced from 1 s to 12 ms and windowed with a Hann 

window. The resulting filter function, checked by taking its Fourier transform, is a fair 

approximation of the original defined filter magnitude function. A further shortening of 

the kernel length will be at the expense of the approximation, due to spurious ripple 

(unwanted ripple) and greater smoothing of the resulting function. 

 

This custom filtering leads to the final filtering method we will discuss. A signal could 

also be filtered by directly multiplying its spectrum with a desired filter magnitude 

function. Of course, this can only be done for sounds that are stored completely in the 

 
Fig. 18.6. Custom designed filter. From top to 
bottom: desired log spectrum; linear version; its 
inverse Fourier transform; its center shifted 
(rotated), zoomed in, and Hann-windowed; 
resulting spectrum as a check. 
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computer prior to the filtering: the spectrum of the complete sound has to be available 

before the filtering can be performed. The multiplication with a magnitude function is 

equivalent to zero phase filtering so that the filter responds to, for example, local parts 

of the sound ‘before they occur’.  

 

To complete this section, we will go into a subject that might give rise to some 

confusion. When we activated the digital filters, we applied a ‘unit pulse’ which was 

realised by making one sample 1 and all next samples 0. In fact, this could be seen as a 

pulse with a length equal to T (The sampling interval). The spectrum of a pulse like that 

is a sinc function which causes a spectrum which is not flat from 0 to the Nyquist 

frequency. Should it be necessary to compensate for the sinc’s roll-off? The answer is 

“no”. To explain this, we can use a similar way of reasoning as that for Shannon’s 

reconstruction theorem when we exchange the time and frequency domains. To convert 

all discrete frequency points of a horizontal spectrum to a continuous spectrum we 

apply a sinc function at each frequency point and add it all (see for this construction 

fig. 17.4 of section 17). The result cannot be different from a straight horizontal line 

which forms a continuous spectrum. This is the spectrum of a pure Dirac pulse! Its time 

function, therefore, has zero length. In fact, the values between the samples can’t, and 

don’t, exist.  

 

This is the end of part A. You should now have gathered sufficient basic knowledge to 

understand the why and how of the practical sections of part B. 
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Part B. Practical considerations 

 

19. The principle of speech production 

 

Many things we learned from the theory in part A of the book can be applied to the 

analysis of sounds that are produced by the human voice. Even if your focus of interest 

does not lie primarily in the field of speech, a lot of practical information about various 

sound analyses can be explained on the basis of speech sounds. 

 

In a nutshell, speech sounds are generated by pushing air from the lungs through the 

vocal folds, also called vocal cords, which will start to vibrate. The sound generated by 

the vocal folds activates the cavities of the throat and mouth (together forming the vocal 

tract) which act as resonators. Therefore, the sound departing from the lips can be seen 

as the source sound filtered by all vocal tract cavities (see fig. 19.1). By moving the 

tongue and jaw into various positions the shape of these cavities can be altered so that 

the filtering of the sound coming from the source can be varied. In this way the 

differences between the vowels are realized. For example, the sounds of the words 

“feed” and “fed” only differ in 

the mid parts of their waveforms 

where, in these examples, the 

vowels are positioned. The soft 

palate (or velum) can be moved 

to open or close the entrance to 

the nasal cavity which results in 

nasal or oral sounds 

respectively.  

 

The vibration of the vocal folds 

can be explained by looking at 

the following sequence of events: 

starting from the vocal folds held 

close by the controlling muscles, 

the air pressure from the lungs 

forces the vocal folds to part from 

each other so that air passes 

through. The air pressure 

between the vocal folds then decreases (caused by the so-called Bernoulli effect) which 

causes the vocal folds to close again, due to their elastic properties. The air pressure 

below the vocal folds is then built up again by the sustained air flow from the lungs and 

the cycle starts again. The result is a periodical stream of separate air packets which 

form the sound source of (voiced) speech, also called glottal pulses. The frequency of 

the resulting sound depends mainly on the length and mass of the vocal folds and the 

different forces applied by this set of muscles. A typical waveform of the air flow as a 

 
 
Fig. 19.1. View of the human speech organs. 
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function of time can be seen in fig. 19.2, which is made by using a commonly accepted 

artificial glottal pulse 

generation model.  

 

In the case of 

whispered vowels, the 

vocal folds do not 

vibrate; instead, they 

are opened a little, 

causing air turbulence, 

thus producing a noise 

sound. Additional noisy speech sounds can be made by adjusting gaps between teeth 

and tongue tip or making other narrow passages for the air in the vocal tract using the 

epiglottis or the tongue. All these noisy speech sounds are independent of the vocal 

folds but can also be combined with vibration of the vocal folds (voiced consonants). 

In this section we will focus only on voiced sounds. 

 

A typical spectrum of a periodical glottal pulse signal is depicted in fig. 19.3. In this 

example the roll-off is about 16 dB/oct, a value mainly defined by the maximum speed 

of change that occurs in the waveform curve, which depends on the time it takes to 

close the vocal folds: the collision time (Tc in fig. 19.2). The shorter the collision time, 

the weaker the roll-off and thus the stronger the high harmonics. The longer the 

collision time, the greater the roll-off. The collision time is roughly proportional to the 

F0 period. In the 

example Tc is about 

20% of the F0 period. 

Commonly it is 

assumed that the roll-

off of the average 

human voice source is 

about 12 dB/oct. In 

practice, however, 

great variations of this 

ratio may exist from 

speaker to speaker.  

 

In this case, the DC 

level at zero frequency (which is equal to the mean amplitude value, as mentioned in 

section 6) is about 88 dB. This relatively high value can be expected because the 

complete waveform of the glottal pulse exists above the zero level, here resulting in a 

mean value of about 1/3 of the peak value. 

 

 
 
Fig. 19.2. Glottal pulses of human voice. 

0

Time

Air
flow

Tc

 
 
Fig. 19.3. Spectrum of glottal pulses (F0 = 120 Hz). 
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The sound waves passing the lips are propagated in the surrounding air. The transition 

of the sound from the enclosure of the vocal tract area to the unrestricted surrounding 

air can be regarded as a high-pass filter, called the radiation filter, having a slope of 

about + 6 dB/oct. The explanation of this phenomenon is rather complicated. With a bit 

of a stretch of the imagination one can regard the mouth opening in the skull as a small 

hole in a baffle (sounding board), where the skull is seen as a baffle with a relatively 

large surface. The shorter the wave length, the better the surrounding air is activated. 

The result of this phenomenon is a high-pass filter. You can find a more extensive 

explanation in Rabiner and Schafer, p.71...74 [11]. Combining the nominal slope 

of - 12 dB/oct of the glottal 

source with the +6dB of the 

radiation filter results in an 

overall slope of - 6dB/oct.  

 

Thus, we can conclude that 

a voiced speech sound 

signal entering the 

microphone can be regarded 

as the result of a source 

substitute, having a 

spectrum with a slope 

of - 6dB/oct, activating the 

vocal tract’s filter. For this 

reason, the source 

waveform is often presented 

as the derivative of the 

glottal pulse (see fig. 19.4a), 

because the spectral effect 

of the derivative is that it 

alters the spectral slope with 

+ 6 dB/oct (see 

Appendix II).1  

 

As a consequence, the 

differentiation of the glottal 

pulse causes the DC 

component being zero 

(starting from any frequency 

in the direction to zero, each 

octave attenuates the spectrum level with 6 dB; the number of octaves to zero is infinite 

so that the level at zero frequency is -∞ dB). 

 

 
1  In Praat, the default settings of artificially generated glottal pulse substitutes result in spectral slopes 

of about -11 dB/oct instead of  -6 dB/oct, caused by smoothing of a discontinuity in the glottal 

function derivative. 

 
 
Fig. 19.4. a: derivative of glottal pulses; b: its 
spectrum; c: vocal tract filter function of natural 
/ɛ/ sound; d: spectrum of resulting speech signal.  
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The shape of the glottal pulse is of limited importance. In Praat, many parameters of 

the generated artificial glottal pulse can be adjusted, like open/close time ratio, order of 

the time function formula, collision time, etc. Many different varieties of the glottal 

pulse waveform settings produce more or less the same spectrum (apart from 

pathological glottal pulses with can have very irregular spectra). The main parameter 

of the glottal pulse is the collision time, which has some influence on the slope of the 

spectrum.  

 

An example of the vocal tract filter properties for the vowel sound “/ɛ/” within a word 

like “fed” is displayed by fig. 19.4c. This vocal tract filter activated by the derivative 

of the source waveform results in the spectrum as shown in fig. 19.4d which, as 

explained in section 8, equals the multiplication of the spectra of fig. 19.4b and 19.4c.  

 

The peaks of the vocal tract’s filter function are called the formants. The frequency 

positions and relative amplitudes of these formant peaks will vary when different vowel 

sounds are produced, depending on the positions of the jaw, the tongue, the soft palate, 

etc.  

 

As a model for the vocal tract filter, the vocal tract area is often regarded as a 

combination of two or more resonant tubes. See fig. 19.5a for an example of a dual tube 

model of an [a]-like sound. The output of the left section is the input for the right section 

so that the dual tube model can be regarded as a cascade of two filters. Both tube 

sections in this example can be regarded as resonant tubes that are open at one end. On 

the left side of the picture you see that the back tube is closed, this is the position of the 

source (glottis). The front tube (which ends at the mouth) is much wider and can be 

regarded as (almost) closed on the left side by the narrow back tube. The tubes resonate 

in such a way that there fit only odd numbers of quarter wavelengths within the tube 

length. For a single tube then, if l is the length of the tube and c is the propagation speed 

of the sound, the resonance frequencies are defined by: 

 𝑓𝑛 =
(2𝑛−1)𝑐

4𝑙
  (19.1) 

So even with only two tube sections there will be a great number of formant peaks. To 

complicate matters a bit further, a constriction can be made in the vocal tract so that the 

back part no longer has an open end (see fig. 19.5b). This means that it must be regarded 

as a Helmholtz resonator, named after the German physicist Herman von Helmholtz 

(1821-1894), who investigated, among other things, frequency components of musical 

instruments. Now for the Helmholtz resonator the resonance frequency is defined by 

the (simplified) formula: 

 𝑓 =
𝑐

2𝜋
√

𝑆

𝑉𝐿
  (19.2) 

where c is the propagation speed of sound, S is the cross-section area of the constriction, 

V is the volume of the body and L is the length of the constriction. Whereas the lowest 
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frequency of the open-ended tube is determined by its length, the resonance frequency 

of the Helmholtz resonator does not have this limitation by length (theoretically, if S 

decreases to zero, the resonance frequency becomes zero too). This is the reason why 

the lowest formant for an [I] sound as in deep is so low that it may at times be not much 

higher than the fundamental frequency.  

 

Because the back part of the vocal tract, in the case of a constriction, still has the shape 

of a tube (see fig. 19.5b), the air within it will also resonate like a tube and will produce 

resonance frequencies with wavelengths that depend on the tube length. In the case 

shown in fig. 19.5b, however, the tube must be regarded as (almost) closed at both ends 

(not taking into account the small opening of the place of constriction). For this type of 

tube resonance there is an integer number of half wavelengths so that the frequencies 

are:  

 𝑓𝑛 =
𝑛𝑐

2𝑙
 (19.3) 

As for the bandwidths of the resonance peaks, we must bear in mind that they depend 

on the type of material used. In case of physical tube models, the material used is often 

plexiglass which has a low 

absorption coefficient, 

causing low damping 

factors, i.e. small 

bandwidths. The tissue of 

the human vocal tract, on 

the other hand, has much 

higher absorption 

coefficients. In addition, 

during the open phase 

section of the glottal pulse, 

part of the vibrating air 

will be absorbed instead of 

reflected, which 

considerably increases the 

bandwidth of low 

formants. As a rule of 

thumb, the bandwidths of 

the formant peaks relate to 

the formant frequencies 

and are roughly equal to 

1/20 of the formant 

frequencies, with the restriction that the absolute value of bandwidths will generally not 

sink below, say, 50 Hz or so. This implies that the bandwidths of formants lower than 

1000 Hz will remain about 50 Hz. 

 

 
 
Fig. 19.5. Resonating tubes model of vocal tract. The 
back tubes of a and b resonate in different modes. In 
b the back tube together with the constriction (C) 
together act as a Helmholtz resonator as well. 

Back tube Front tube

Back tube C

Helmholtz reson.

Front tube

a

b



130 

 

The bandwidth values occurring in natural speech, combined with the generally small 

distances between formants, are the cause of the relative shallowness of the troughs 

between the peaks of the vocal tract filter function. However, sometimes the filter 

function shows low energy areas caused by ‘side tubes’ which are closed at the end. 

These may cause absorption of specific frequencies, sometimes called antiformants. 

The nasal cavity, for example, plays an important part. 

 

Further details of tube models for vowel sounds fall beyond the scope of this book. 

Besides, there are many books on this subject (for example, see Rabiner and Schafer, 

[6]). For now, we can conclude that, in practice, the vocal tract filter function can be 

complicated considerably by the great number of peaks which may occur at 

unpredictable distances. In addition, the bandwidths of the peaks often cause the peaks 

to be relatively indistinct. 

 

In normal speech, the relative bandwidths of speech formants are much greater than the 

relative bandwidths of many types of musical instrument resonators. For example, if 

the string of a piano or other plucked string instrument is regarded as a resonator, its 

damped sine wave typically has a relative bandwidth of about 1/1000. This 

characteristic implies that the ‘resonators’ of musical instruments as such (piano, guitar, 

harpsichord) can produce a very long sustained tone per string. In speech, the resonance 

energy has often almost damped out before the next glottal pulse excites the vocal tract 

filter again (at least, when the fundamental frequencies are not very high).  These higher 

bandwidths are mainly caused by the higher absorption coefficients of the tissue of the 

vocal tract. In addition, because of the relatively fast repetition rate of the glottal pulses, 

the tones of speech sounds are determined by the glottal pulse frequency, not by the 

vocal tract resonances. The latter only determine the timbre of the tones, which can be 

adjusted to produce the different vowel sounds. Therefore, speech sounds differ greatly 

from sounds of musical instruments. (In section 25 we will discuss signals from musical 

instruments in some more detail.) 

 

Because, in general, the damped sine waves of voiced speech formants are ‘disturbed’ 

at the start of the next F0 period by a new start of damped sine waves, the spectral 

bandwidths of the undisturbed (i.e. once-occurring) damped sine waves are broadened 

by the spectrum of the fundamental period ‘window’. From section 9 you may know 

that the spectrum of a periodical sound is equal to a ‘sampled’ version of the continuous 

spectrum of one period. Then, one period can be seen as a multiplication of the damped 

sine wave, from the start, with a rectangular window having a length of one F0 period 

so that their continuous spectra are convolved. See fig. 19.6 where the ‘underlying’ 

continuous spectrum of a single F0 period of an artificial one-formant ‘vowel’ is shown 

(black line), together with the spectrum of the untruncated once-occurring damped sine 

of the formant (red line). You can see that the peak of the spectrum of the damped sine 

is broadened by the main lobe of the sinc function of the rectangular window spectrum. 

The -3 dB width of the main lobe being about 0.9*F0, this means that, in principle, the 
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-3 dB bandwidths of formants cannot be lower than this value. As you can see, each 

side lobe of the continuous spectrum contains one spectral point of the discrete 

spectrum of the periodic vowel signal and the main lobe contains two of them. Only 

when the formant frequency is exactly a multiple of the F0, the main lobe contains one 

spectral point and all other spectral points fall at the minima between the lobes. As, in 

normal speech, the formant frequencies do not depend on the F0, this latter case is rather 

exceptional (more about this is discussed later), and it can be concluded that low 

bandwidth values relative to F0 in speech do not manifest themselves as such and 

therefore cannot be measured adequately!1 

 

For a demonstration of this limited bandwidth influence, run DEMO 19.1. An artificial 

‘vowel’ sound with only one formant is played, having a fundamental frequency of 220 

Hz and a formant frequency of 1200 Hz.  The formant peak thus falls roughly midway 

between two adjacent harmonics (i.e. the 5th and the 6th). First you will hear the sound 

with a ‘normal’ bandwidth of 150 Hz, then the same with a formant bandwidth of 

50 Hz. The latter bandwidth even being only 1/3 of the former, you are unlikely to hear 

much difference. Next, the same is done, now the formant frequency coinciding with 

 
1  Linear Predictive Coding analysis (LPC) used for formant measurements can, in principle, present 

small bandwidths. However, these values are often not equal to the ‘real’ natural bandwidths but 

may result as a ‘side effect’ from the simplified mathematical model applied. In the next section 

this method is described in some detail. 

 
 
Fig. 19.6. Red: convolution of continuous spectra of the damped sine of one formant 
(black) and the rectangular ‘window’ of the F0 period. A: the formant falls between 
two adjacent F0 harmonics. B: the formant falls exactly on a harmonic of the F0. 

dB

0 1000 2000 3000 4000 5000

0

20

40

A

dB

0 1000 2000 3000 4000 5000

0

20

40

B

Frequency (Hz)



132 

 

the 5th harmonic. Although audible, the difference due to the bandwidth alteration in 

this case is rather small as well.  

 

When the bandwidth B is low in relation to F0, however, the remaining amplitude of 

the damped sine of the formant at the end of the F0 period can ‘disturb’ the next period 

significantly. In that case, the intensity of a formant will be more dependent on the 

positions of the harmonics: it will have a higher intensity when it coincides with a 

harmonic as there is no phase shift from the end of the damped sine and the start of the 

next one. So, at low bandwidths (i.e. relatively high remaining formant amplitude), 

there will be some formant intensity dependence of F0. As the bandwidth of normal 

speech is roughly proportional to the formant frequency, this intensity dependence 

vanishes at higher formants as, in these cases, the formant peak encompasses more 

harmonics and the amplitudes at the end of the F0 period are practically zero. In that 

case, the intensities of the higher formants depend more on their bandwidths only 

because, within the F0 period, the lower the bandwidth, the longer the train of periods 

of the damped sine wave before it peters out, resulting in higher formant peaks, and 

vice versa. In normal speech, however, the higher the formants, the lower their 

intensities, due to the roll-off of the glottal pulse, so that, in general, a possible 

bandwidth influence of the higher formants will play a minor role. This is indicated to 

some extent by the last part of DEMO 19.1: there, an artificial a-like vowel sound is 

generated containing four formants with a sweeping fundamental frequency, varying 

from 190 Hz to 110 Hz, at first with ‘normal’ bandwidths of 1/12 of the formant 

frequencies, then with low bandwidths of 1/36 of the formant frequencies. You can 

judge for yourself the influence of these large bandwidth differences on the vowel-like 

sound. (Although a low formant bandwidth causes greater amplitude fluctuations 

during the F0 sweep than a high formant bandwidth, these increased amplitude 

variations are not strongly perceived.) 

 

From this all, we may conclude that the bandwidth feature of formants plays no 

important part in the perception of normal speech, because of the spectral broadening 

by repetitive activation of the vocal tract filter. (In singing, however, some people can 

use the effect of increasing the intensity by ‘tuning’ a formant frequency so that it 

coincides with the fundamental frequency or one of the harmonics. Especially in the 

case of the high-pitched sounds that female singers produce, the amplitudes of the 

damped sines of the formants at the end of the F0 periods are relatively high so that 

harmonics in the spectrum at both sides of the tuned formant (at the throughs of the 

lobes) will have a relatively low intensity, resulting in a distinctive spectral peak at the 

formant frequency. Some people can produce overtone singing, a very precise tuning 

ability where a formant is ‘stepped’ from one harmonic to another, such performing a 

simple melody while the F0 is held steady.)  
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20. Formant measurements 

 

If we want to estimate the formant frequencies from a periodical part of the speech 

signal which the microphone picked up, the vocal tract’s filter function should in some 

way be reconstituted from this signal. Referring to the example of fig. 19.4: the speech 

signal from the microphone is represented in fig. 19.4d. For measuring the formants, 

we should try to ‘convert’ this signal into the graph of fig. 19.4c. In general, the 

following problem emerges: in case of high fundamental frequencies the filter function 

cannot be reconstructed reliably from the signal’s spectrum. This is because the distance 

between the spectral ‘samples’ (the harmonics) is too large. When this occurs, low 

frequency formants may even become invisible (in some cases a formant frequency 

may even fall below the fundamental frequency), and higher formant positions cannot 

be determined accurately. Also, two formants close to each other may be detected as 

one formant. 

 

If we apply the sampling theorem, mentioned in section 17, to the discrete ‘samples’ of 

the line spectrum of a periodic signal, we can conclude that the underlying continuous 

‘signal’ (in this case the continuous spectrum) can only be reconstructed by frequency-

domain sinusoids which have ‘periods’ of 2F0 hertz or higher. This means that the 

shortest distance between peaks of the continuous function which can be reconstituted 

from the discrete function should be at least about 2F0.
1 In other words: the formant/F0 

ratio should be higher than 2. This limits the formant measurement range at the low 

side. In addition, the ‘formant measurement resolution’ is limited to about 2F0 as well. 

 

The range of the formants for average male voices goes from roughly 250 Hz to 5000 

Hz and the F0s of male voices range from roughly 70 Hz to 300 Hz (with an average of 

120 Hz). This means that the lower formants cannot be detected reliably when the F0 is 

higher than, say, 125 Hz. In many cases, therefore, this formant/F0 ratio requirement is 

not fulfilled. For female voices the formants range from about 350 Hz to 5500 Hz and 

their F0s go, roughly, from 100 Hz to 500 Hz (with an average of 220 Hz) so that their 

formant/F0 ratios for low formants are even lower than the male values. 

 

Infant speech formants depend very much on the age of the child. On average, infant 

formant/F0 ratios fall somewhere between those of males and females. The average F0 

is not very different from the female value but the formants are much higher, mainly 

caused by the smaller dimensions of the infant vocal tract2. (The bandwidths are higher 

as well, as the relative bandwidths roughly do not change. So, the formant peaks 

encompass more spectral ‘lines’ compared with female formant peaks.) 

 
1  In practice, this shortest distance can be somewhat lower than the 2F0 value, as the underlying 

continuous spectrum function varies relatively gradually so that the probability of aliasing is 

limited, as we will see later. 
2  It seems that not all speech researchers are fully aware of this formant/F0 ratio aspect: it is often 

assumed that measuring infant speech formants is more difficult than female speech formants 

although in general the opposite is true. 
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There are many methods for measuring formants from the spectrum of (voiced) vowel 

sounds. Let us look at some of them in some detail. 

 

 

a. The swept band filter analysis. 

 

Although the following method stems from old analog hardware analyzers not used any 

more, its working principle is worth mentioning because of the insight it may give. For 

this method it is necessary to either select sustained vowel sounds, or make the speech 

vowel sound you want to analyze perfectly periodical (this can be done by, for example, 

repeatedly replaying one specific fundamental period). As the name already implies, 

the speech signal is filtered by a band filter which is (slowly, because of the necessary 

response time) tuned through the frequency range of interest so that its center frequency 

shifts from zero frequency to the highest frequency of the range.  

 

Viewed from the 

frequency domain, in 

each shift position the 

spectrum of the speech 

signal is multiplied by 

the shifted ‘spectrum’ 

of the filter. Thus, the 

total result can be seen 

as a convolution 

directly in the 

frequency domain of 

the speech line 

spectrum and the filter 

amplitude spectrum. 

In each shift position 

the filter output power 

can be seen as a 

measure of the 

spectral power of the 

speech signal at the 

current frequency band, just like the example of the radio tuning, mentioned in 

section 12. To get the spectral values, the average output power is extracted from the 

filter output for each shift position.  

 

It will be clear that the result depends on the shape of the filter function, in particular 

its bandwidth. In fig. 20.1 this filtering method is applied to the vowel signal from 

fig. 19.4, using a 2nd order sweeping band filter. Fig. 20.1a shows the line spectrum of 

the signal, compensated for the roll-off of the source spectrum; fig. 20.1b shows the 

result, applying three different bandwidths. The bottom curve emerges when the 

 
 
Fig. 20.1. a: Line spectrum of vowel from fig. 19.4 
(slope corrected for source roll-off) and vocal tract filter 
function (grey line); b: 2nd order band filter spectra; from 
top to bottom: B = 600 Hz; B = 260 Hz, B = 100 Hz.  
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bandwidth is small compared with F0; the mid curve occurs when the bandwidth is 

1.3F0 and the upper curve corresponds with a bandwidth of 3F0. Obviously, for the 

measuring of formants the filter bandwidth should not be too low, otherwise the spectral 

harmonics become dominant. At the opposite end, when the bandwidth is too high, the 

spectral definition of the underlying continuous spectrum becomes poor. There is an 

optimum bandwidth which offers a best compromise between F0 ripple and spectral 

definition. In the case of this filter type the optimal bandwidth is displayed by the mid 

curve, i.e. when the bandwidth is about 1.3F0. (This value has been found by trial and 

error.) The fact that the optimal bandwidth is lower than the 2F0 limit which you would 

expect according to the sampling theorem is caused by the gentle slopes of the band 

filter spectrum so that a wider area than the 3 dB bandwidth is used, thus making the 

interpolation between the spectral lines more smoothly. The consequence is that these 

gentle slopes mean great 

overlapping areas which, for a 

great deal, ‘fill the valleys’ in 

the curve so that the dynamic 

range of the amplitude values 

of the spectrum is very poor. 

(In fig. 20.1b the displayed dB 

range is even limited to only 30 

dB to zoom in on the amplitude 

range.) Of course, many other 

filter types are possible but all 

alternatives are compromises 

between amplitude resolution, 

frequency resolution and side 

lobe suppression. A better 

compromise can be achieved 

by a Gaussian filter, which will 

be dealt with later on. 

 

Commonly, in speech vowel 

spectral analysis the frequency 

axis is linear and the bandwidth applied is constant, as is also applied in this section. In 

some cases, a logarithmic frequency scale and a constant percentage bandwidth are 

used. See the box CHOICE OF FREQUENCY SCALE IN SPEECH SPECTRA for a general 

discussion about the choice of frequency scales for speech analysis.  

 

 

b. Band filter bank analysis. 

 

This method is practically equivalent to the swept band filter analysis. The only 

difference is that, in band filter bank analysis, many band filters run simultaneously 

while each band filter is permanently tuned to a different frequency section (frequency 

CHOICE OF FREQUENCY SCALE IN SPEECH 

SPECTRA 

 

The frequency resolution of spectra of voiced speech parts 

is limited by the ‘sampling’ of the vocal tract’s filter 

function at multiples of the fundamental frequency. Its 

implication is that, in principle, the peaks in the measured 

envelope spectrum cannot have bandwidths smaller than 

about 1.3F0. This value is constant at steady F0, which 

means that the frequency resolution remains constant over 

the complete formant frequency range. The bandwidths of 

the peaks in the ‘real’ vocal tract filter function, however, 

will be roughly proportional to the frequencies of the 

formants. The measured bandwidths, therefore, will 

approximate the real bandwidths better at high values of the 

formant frequencies while the bandwidths of low formants 

are limited by the F0. 

 

To benefit from the high resolution at high formants the 

spectra of speech sounds are usually displayed at a linear 

frequency scale. 
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band), together covering the entire frequency range. The output amplitude of each band 

filter represents one point of the measured spectrum (see fig. 20.2). In the figure, the 

output power envelope of each band-pass filter (BPF) is acquired by squaring and 

integration (Penv.) For a good approximation of the convolution as mentioned in 

method a. there should be a sufficiently high number of (overlapping) band filters to 

obtain enough frequency points. 

 

For the choice of bandwidth, the same applies as mentioned in method a. A wide 

bandwidth causes greater frequency overlapping areas than a narrow bandwidth, so that 

the total number of frequency points in the range does not need to be as high as in case 

of a narrow bandwidth. In practice, for 2nd order band filters the distance between the 

center frequencies can even be increased to as much as the 3-dB bandwidth to retain a 

smoothly overall curve. 

 

Obviously, for this method there is no need to make the speech sound periodical: it is 

an ‘instant analysis’ which reacts on the incoming speech sound in real time. Of course, 

the band filters have a non-zero impulse response time so that the resulting spectra are 

delayed a certain amount of time.  

 

 
c. Band filter analysis by software. 

 

Methods a. and b. naturally can be much more easily performed by software after 

digitizing the speech signal that is to be measured. For example, you can easily 

construct repeating signal periods to make a long and steady signal.  In addition, digital 

processing also makes it possible to apply all kinds of filter types, including digital 

 
 
Fig. 20.2. Spectrum analysis by bandpass filter bank. 
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filters, which are very efficient (see section 18). The band filtering can be carried out 

in the frequency domain, using convolution as described above.  

 

As an example, analysis using software makes it easy to apply real Gaussian filters. 

(Strictly spoken, a Gaussian filter cannot be realized by using analog hardware. In 

practice, however, it is possible to realize very close approximations.) Compared with 

the 2nd order band filter spectra mentioned above, the Gaussian band filtering produces 

much better results. See fig. 20.3 for a Gaussian band filter spectrum of the vowel 

shown in fig. 19.4. The bandwidth applied is 0.9F0 which seems to be the best 

compromise between F0 ripple and spectral definition for the Gaussian band filter. 

 

 

d. Windowed sinc cepstral smoothing (WSCS). 

 

Another method is reconstructing the filter function in the manner which is described 

in part A about sampling (section 17). There, the reconstitution of the continuous time 

function from the sampled version was carried out by convolution of the sampled 

function with a sinc function (see fig. 17.4). We can do likewise in the frequency 

domain: reconstructing the continuous frequency function from the sampled frequency 

function (the line spectrum) by convolution with a frequency domain sinc function. In 

practice, the sinc function has to be truncated or, even better, windowed, thus 

minimizing the effects of the discontinuities. This leads to the windowed sinc filter as 

mentioned in section 18 (see fig. 18.1).  

 

However, when the 

formant/F0 ratio 

criterion described 

above is not met, the 

continuous filter 

function will be 

undersampled and the 

reconstructed 

continuous function 

may be a poorer 

approximation of the 

vocal tract filter 

function. This can be 

seen in fig. 20.4a where 

the line spectrum of the vowel sound of fig. 19.4 is convolved with a Gauss-windowed 

sinc function with 17 lobes (8 side lobes at both sides of the main lobe). The deviations 

from the vocal tract filter function (the grey line), stem from aliasing caused by 

undersampling of the continuous spectral vocal tract function. When the vocal tract 

filter is sampled with a 300 Hz fundamental instead of a 200 Hz one, the deviations 

from the original continuous function become quite severe, as shown in fig. 20.4b. To 

 
 
Fig. 20.3. Vocal tract filter approximation of vowel 
from figs. 19.4 by Gauss filtering with 3 dB bandwidth 
of 0.9F0. The vocal tract filter function is shown as well 
(grey line) for comparison. 
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limit the occurrences of these aliasing effects we may attenuate the components that are 

close to the Nyquist by making the sinc filtering less steep. Obviously, the price to pay 

for this is a lower spectral resolution of the result. Figs. 20.4c and fig. 20.4d show the 

result when a sinc filter with only 7 lobes (3 side lobes at both sides of the main lobe) 

is Gaussian-windowed. Especially in the case of the 300 Hz fundamental, the result is 

greatly improved. 

 

A further improvement can be achieved by filtering the logarithmic spectral values 

instead of the linear ones: the logarithmic function is usually much smoother than the 

 
 

Fig. 20.4. A through F: Different windowed sinc filters applied to line spectra of the vowel 
sound of fig. 19.4. Left column: F0 = 200 Hz; right column: F0 = 300 Hz. In A and B, the 
width of the sinc function is 18F0; in C and D: 8F0; in E and F: 22F0. E and F show the 
result of width 22F0 when the log values of the spectrum are filtered, equivalent to Cepstral 
smoothing. In G and H, the result of Gauss filtering with B = 0.9F0 is shown for 
comparison. The original vocal tract filter is shown by the grey lines shown above the 
black curves in the figure. 
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linear one so that less aliasing can be expected. This is done in figs. 20.4e and 20.4f 

where a sinc filter with even 21 lobes is applied, and we can indeed see some 

improvement. In fact, this sinc filtering of the log spectrum of a periodic signal is called 

cepstral smoothing, the word cepstrum referring to the forward Fourier transform of 

the power spectrum, as if the log spectrum were a time function. Some people even use 

words like quefrency and even liftering. In spite of the words specially invented for this 

analysis, the method stems from the sampling theory and, in fact, is similar to 

Shannon’s reconstruction theorem as mentioned in section 17. 1 

 

To compare the results of figs. 20.4A through 20.4F with the Gauss filtering described 

in method c, the ‘ideal’ Gaussian filter, with a bandwidth of 0.9F0, is applied to both 

fundamental frequency examples and displayed in figs. 20.4G and 20.4H. As you can 

see, the difference between this one and the windowed sinc filtering of figs. 20.4E and 

20.4F is not very great, however, in all sinc filtering examples the resulting curve is 

seen to go through all sample values, whereas the Gaussian filtering fills the throughs 

to some extent so that the peaks are less prominent than those of the windowed sinc 

filtering.  

 

Theoretically, the reconstruction applies to spectral lines, i.e. the DFT components of 

exactly one period or an integer number of periods. However, the reconstruction 

method described works also on a windowed part of the vowel sound. In that case there 

are no pure spectral lines but spectral functions of the window, due to the convolution 

 
1  In Praat the possibility of cepstral smoothing has been built-in. Instead of a windowed sinc 

function, however, a Gauss function is applied. This means that, if the proper bandwidth is chosen, 

the result is similar to the ‘Gauss filtering’ mentioned earlier, but applied to logarithmic values. 

However, this has the consequence that the troughs between the peaks are less ‘deep’, caused by the 

relatively high influences of the harmonics at the sides of the peaks which means that this is not the 

best method for formant measurements. 

 
 
Fig. 20.5. Windowed sinc cepstral smoothed spectra of 100 ms windowed part of vowel 
sound of fig. 19.4. Green line: constant F0=200Hz. Red line: F0 shifts 10 Hz within 100 ms 
window. The vocal tract function is shown as well for reference (downshifted grey line). 
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in the frequency domain (see section 10). In this way, there is no need to isolate exactly 

an integer number of periods. Even when the fundamental frequency varies somewhat 

within the selected signal window (which in practice will always occur to some extent), 

the method works reasonably well if the sinc function applied is matched with the mid 

value of the F0. See fig. 20.5 where a 100 ms Hann windowed part of the signal is 

analyzed. The green line is the result when the F0 is constant and looks almost the same 

as the spectrum of the interpolated DFT components of one period, as shown in 

fig. 20.4.E. The red line shows the result when the fundamental frequency of 200 Hz is 

varied 10 Hz within the 100 ms window length. The result is not very different from 

the green graph, apart from a certain spectral slope. This is caused by ‘filling the gaps’ 

between the spectral lines in the higher region: the shift of the nth harmonic is n times 

the shift of the fundamental so that, for example, the 20th harmonic is shifted up to 

200 Hz in this case. In fact, this spectral lift can be compensated, as the F0 variation 

within the window can be measured. It is important that the peaks remain at practically 

the same frequencies. 

 

(In the sinc filtering examples described the convolution was performed using the 

symmetrical spectrum, i.e. including the negative frequencies, thus avoiding transient 

effects after filtering of the sudden start of the spectral function at 0 hertz.) 

 

As can be seen from fig. 20.4, the deviations from the original continuous vocal tract 

function in the case of the high F0 of 300 Hz are substantial. This may disappoint 

phoneticians who want to extract formant frequencies, but one should not expect a 

spectral analysis method to extract local formant frequency information which is not 

present in the isolated signal segment. (If a method does, it will generally produce 

wrong results!) It may be wise to realize that very weak or absent formant peaks in the 

speech signal cannot be perceived by listeners as well. (And people learn to control the 

various speech vowel sounds by listening to them in the first place.) 

 

 

e. The spectrogram. 

 

As you may recall from part A, if we multiply the speech signal with a window function 

which is the impulse response of the filter applied, the spectral components of the signal 

will be convolved with the spectral function of the window. Therefore, analysis of the 

local spectral components of the signal can be achieved by choosing the correct window 

length. This opens the possibility of analyzing a complete speech utterance (a sentence 

for example) by moving a window along the time axis and computing the local 

spectrum of the windowed part of the signal at each position in time.  

 

To display this information, three dimensions are needed (time, frequency and 

intensity/amplitude). In general, this is done using a graph called a spectrogram. See 

fig. 20.6 for an example of a spectrogram made with the Sound editor of the program 

Praat of the phrase “his lips glued together”. The horizontal axis represents time, the 

vertical axis frequency and spectral intensity is expressed by the intensity or greyscale 
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of each point. Analysis programs that produce spectrograms like these almost always 

apply (stepwise) moving windows as described above. The spectrogram offers a very 

useful way to make visible the different sounding speech parts (phonemes). 

 

In Praat, the default settings of spectrogram parameters use a moving Gaussian window, 

causing no visible side lobes in the spectra. In each window position in time, the Fourier 

Transform is computed. The bandwidth can be chosen at will, by setting the window 

length1. (For the ‘optimal’ bandwidth of 0.9F0 for measuring formants, the window 

length in the Praat spectrogram should be set to about 1.4/F0 seconds.) The steps are 

much smaller than the window length, so that the overlap causes smooth transitions 

from one spectrum column to the next one. 

 

In fig. 20.7 two Praat spectrograms of the same phrase as used above are displayed. In 

the top spectrogram the bandwidth is small with regard to the fundamental frequency 

so that the separate harmonics of the vowel’s F0 can be seen as horizontal lines (which 

are bending gradually caused by the changes in the F0). In the lower spectrogram of the 

figure the bandwidth is much wider than the F0 so that the separate harmonics are not 

visible any more. Instead, there are (somewhat vague) vertical lines. These occur in the 

positions where the vocal tract filter starts to react on the steepest parts of the glottal 

pulses, where the high frequency spectral components have the most energy. With the 

 
1  Because the Gaussian window has no time limits, Praat defines the Gaussian window length used in 

spectrograms as the time between the positions where the function values are 5% of the top value. 

Using formulas 13.3 and 13.4 from section 13, it can be calculated that the spectral bandwidth of 

the untruncated version of this window function is about 1.3/ (defined window length) hertz. The 

actual window length applied by Praat is twice as long, which limits the side lobes due to truncation 

to negligible values. 

 
 
Fig. 20.6. Praat’s Sound editor, displaying the waveform and spectrogram of the 
English phrase “his lips glued together”. 
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band being as wide as it is, the impulse response of the band filter applied is very short. 

In other words: the time resolution is great while the frequency resolution is poor. It is 

the other way around when the bandwidth is small. (The old-fashioned hardware speech 

spectrograph, therefore, had a bandwidth switch to select either narrow band or wide 

band analysis.) 

 

There is an important difference between the moving window principle used in 

spectrograms of this type and the swept band filter or band filter bank analysis: in the 

latter cases the spectral component values are computed over a relatively long part of 

the signal (in the case of the swept band filter analysis the signal is made steady by 

repeatedly replaying its fundamental period during the complete frequency sweep). In 

other words: it produces a long-term spectrum. In the moving window method, 

however, the result is a short-term spectrum when the window applied is only as long 

as a few F0 periods. Now the result is highly dependent of the exact time position of the 

window. The shorter the window, the greater the spectral dependence of the position 

will be. You may run DEMO 20.1 for a display of consecutive spectra from a 

 
 
Fig. 20.7. Waveform (top), narrow band spectrogram (mid) and wide band 
spectrogram (bottom) of the English phrase “His lips glued together”. 
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spectrogram of the sustained vowel as described above. Here the bandwidth chosen is 

about 0.9 times the F0, the ‘best’ value for formant measurements with Gaussian 

windows. You can see that the spectra vary greatly and that in many positions the 

spectra deviate much from the original vocal tract function! 

 

This problem of the moving window in the spectrogram teaches us an important fact: 

for measuring formants it is not a good idea to use a spectrogram and simply apply the 

‘optimal’ bandwidth of, say, 0.9F0. Although the values between the spectral harmonics 

are interpolated, the resulting spectra depend highly on the window position in time 

within the steady vowel part. If we look at the spectrogram as a whole, our estimation 

of the formants can be done quite reliably due to our brains’ ability to do a global filling-

in of the ‘weak points’ using the surrounding values, but the spectral intensities and 

exact spectral peak positions cannot be estimated accurately from the picture. This is 

why automatic formant measurements using data from spectrograms, like these, suffer 

from these ‘weak points’ and we cannot do this without being confronted with a vast 

amount of false formant data. The only way to avoid these spectral fluctuations is by 

using a greater moving window length. Of course, the F0 ripple will then emerge, which 

in turn will hamper the formant estimations. Consequently, where formant estimation 

is involved, the task remains to extract the envelope spectrum from the F0 multiples. 

 

We saw that by using a swept Gaussian band filter or a band filter bank we were able 

to approximate the continuous vocal tract filter from the periodical signal spectrum of 

the vowel sound quite satisfactory (see fig. 20.3). As we explained in section 10 the 

swept band filter result is equivalent to the convolution of the spectrum of the signal 

and the frequency domain filter function. (In fact, the graph of fig. 20.3 is constructed 

like this.) For formant measurements, therefore, it would be advisable to convolve the 

Fourier transform of sufficiently long Gaussian windowed signal selections with the 

frequency domain function of a Gaussian window, having the ‘ideal’ width of 0.9F0. 

Of course, the computation time to display a spectrogram in this way would be much 

higher. The advantage, however, is that the formants could be extracted much more 

accurately and the width of the frequency domain Gaussian window could be 

automatically tuned to the local F0 values so that the spectral filter width is optimal in 

each moving window position. Automatic formant measurements could be done very 

well from these spectrograms by peak detection algorithms. 

 

The fundamental frequency in speech fragments normally varies a lot. Having 

examined the methods described we may conclude that optimal estimations of the 

continuous envelope spectra require that the measuring parameters should be adapted 

to the local F0. 

 

 

f. LPC. 

 

The abbreviation LPC stands for Linear Predictive coding, a name that can be clarified 

by the description which follows. During speech, the changes of the vocal tract over 
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time will be relatively slow w.r.t. the speech wave form fluctuations: a substantial 

alteration of the vocal tract filter function will usually take at least a couple of F0 

periods. Thus, because the changes in the vocal tract occur relatively slow, taking a 

short piece of the signal will present us with a seemingly unchanged filter function. 

Therefore, a relatively short time interval of the speech signal can be regarded as the 

result of the filtering of the glottal pulse (or a noise signal in case of whispered vowels, 

for example) using a filter with steady parameters, resulting in a number of formants 

with constant frequencies and bandwidths. Let’s assume that the spectral slope has been 

compensated for by the right amount of pre-emphasis of the speech signal. This means 

that its source signal has a flat spectrum then and can be seen as either a Dirac pulse 

train or white noise while the spectrum of the speech signal is completely defined by 

the filtering properties. As a thought experiment, suppose that the speech signal is the 

result of filtering of the source signal with a digital recursive filter as described in 

section 18. There the general formula (18.11) for a digital recursive filter was stated as: 

 

 𝑦𝑛 = 𝑎0𝑥𝑛 + 𝑎1𝑥𝑛−1 + 𝑎2𝑥𝑛−2 +⁡…⁡+ 𝑏1𝑦𝑛−1 + 𝑏2𝑦𝑛−2 +⋯ (20.1) 

 

where the x terms refer to the input samples and the y terms to the output samples. 

Because all sample values are caused by the filtering (whereby the overall power level 

depends on the source power), the sample values can be seen as the output of an in-line 

filter which simplifies the formula by leaving out all x terms. By convention the 

LPC filter formulas use a’s instead of b’s: 

 𝑦𝑛 = 𝑎1𝑦𝑛−1 + 𝑎2𝑦𝑛−2 + 𝑎3𝑦𝑛−3 +⋯+ 𝑎𝑘𝑦𝑛−𝑘 (20.2) 

That means that each sample value can be seen as the sum of the values of k preceding 

samples, each multiplied with a coefficient ai where i is the number of sample steps 

before the occurrence of the nth sample. The number of preceding steps k can be chosen 

to define the order of the filter. Because each formant peak can be seen as a 2nd order 

filter section, the order k of the complete filter should be twice the expected number of 

formants. During the relatively steady time intervals of the speech (the chosen window 

length) we may assume that the values of the filter coefficients (the a factors) will not 

vary much. Therefore, the way of thinking is that each sample could be predicted to a 

certain accuracy using its k preceding sample values. Because of the facts that the filter 

with order k will not be exactly equal to the real vocal tract filter function and the vocal 

tract filter will vary somewhat, there will be a difference e between the predicted new 

sample value and the real new sample value: 

 𝑦𝑛 = 𝑎1𝑦𝑛−1 + 𝑎2𝑦𝑛−2 + 𝑎3𝑦𝑛−3 +⋯+ 𝑎𝑘𝑦𝑛−𝑘 + 𝑒𝑛 (20.3) 

So, the error can be stated as: 

 𝑒𝑛 = 𝑦𝑛 − 𝑎1𝑦𝑛−1 − 𝑎2𝑦𝑛−2 − 𝑎3𝑦𝑛−3 −⋯− 𝑎𝑘𝑦𝑛−𝑘 (20.4) 



145 

 

Thus, the error function can be expressed as a function of the set of a coefficients, each 

multiplied with its current sample value. To find the a coefficients, the procedure is to 

minimize the error function during the filter steps through the window. Mathematically, 

the error is defined by the average of squares of all e’s.1 To find its minimum the 

‘standard’ mathematical method can be used (taking the derivative and set it to 0) which 

produces an equation with the variables a1, a2, ... aK. For a signal that is sampled with 

a sufficiently high sample frequency, the number of samples within the steady interval 

is much greater than the order k of the filter, so that a ‘new’ error equation arises for 

each shift in time, with a new set of a coefficients. The result is a set of k equations, 

each with k variables, which can be solved mathematically in a number of different 

ways. (The exact procedures are beyond the scope of this book. There exist many books 

on this subject. See for example Rabiner and Schafer [11] and Weenink [14].) So, the 

set of a coefficients can be updated with each new step of the in-line filter, always using 

k formerly calculated a coefficients.  

 

Going through the speech signal with steps in this way the time domain filter function 

will be updated with each step. Finally, the frequency domain function can be extracted 

according to the time domain formula 20.2, using the z transform (see Appendix IV), 

which will produce the frequency positions of the peaks (the poles) and their 

bandwidths. Apart from the peaks, the vocal tract filter may occasionally have minima 

(zeros) as well. Although this LPC filter is an all pole filter, having no zeros, it is 

generally assumed that the formants can be reasonably analyzed by this type of filter, 

as the peaks are more important than the dips with regard to human perception. (In fact, 

the LPC filter is a cascade filter which means that the output of one filter section is the 

input of the next. In practice, the oral and nasal cavities of the vocal tract form two 

parallel signal paths which causes the LPC analysis producing greater errors for nasal 

speech sounds.) 

 

The structure of the error formula (20.4) shows that the error signal can be seen as the 

result of a certain digital filtering of the speech signal. Assuming that the speech signal 

spectrum contains all vocal tract filter information, the error signal must have a flat 

spectrum (because the spectral slope has been corrected). This implies that the filter of 

formula 20.4 apparently ‘filters back’ the speech sound to the source signal which must 

have a flat spectrum, theoretically either Dirac pulses or white noise. So, this filter must 

be the inverse of the filter from formula 20.2. (Indeed, an inverse filter can be made 

by changing the sign of all a coefficients and adding a coefficient a0 = 1.) The error 

signal can be regarded as the source signal, separated from the speech. The pitch as well 

as the voiced/unvoiced property can easily be extracted from this error signal. 

 

The values of the a coefficients will vary only slowly with time, as long as the speech 

signal is relatively steady. Therefore, for coding of the speech it is sufficient to process 

only the average formant information per chosen window. Together with the pitch data 

 
1  The method of squaring the errors instead of taking the absolute values is chosen for its easier 

mathematical manipulation, in particular for the possibility of taking the derivative for calculating 

the maxima and minima of a function. 
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and voiced/unvoiced info, the complete speech signal can thus be coded. This obviously 

offers a substantial data reduction compared to the sampled speech version. Of course, 

this compression method may decrease the signal quality considerably, dependent on 

the chosen filter order. (More on signal compression in Part B section 24.) 

 

To compare the LPC method to analyze formants with the methods mentioned before, 

see fig. 20.8 where the LPC analysis is applied to the vowel sound of fig. 19.4. Three 

values of F0 are tested: 200 Hz (A), 300 Hz (B) and 400 Hz (C). The lower graphs (the 

red lines) represent the LPC filtering. No pre-emphasis is applied as there is no roll-off 

in the example. The green lines represent the windowed sinc cepstral smoothing, as 

mentioned in method d, and the grey lines show the vocal tract filter for the purpose of 

reference. The harmonics are drawn as well, to show their possible influence on the 

peak positions. The frequency range for the formants (the formant ceiling) has been 

 
 

Fig. 20.8. LPC filtering of vowel sound of fig. 19.4 (red lines). A: F0=200Hz. B: F0=300Hz. 
C: F0=400Hz. The windowed sinc cepstral smoothing results (green lines) and vocal tract 
filter function (grey lines) are shown as well (graphs vertically shifted apart for clearness). 
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limited to 6000 Hz and the filter order chosen is 18 (for a maximum of 9 formant peaks 

in the range 0.6000 Hz).  

 

As you can see, the bandwidths of the LPC peaks are often much smaller than those of 

the windowed sinc cepstral smoothing and the vocal tract itself which implies that the 

LPC bandwidths cannot be used for measuring the ‘real’ bandwidths of the vocal tract 

peaks.  

 

It appears that, often, the heights of the LPC peaks bear no relation to the corresponding 

vocal tract peaks. Apparently, they depend to a large extent on the fundamental 

frequency: the peak heights are raised considerably when the peak frequencies coincide 

with the positions of the harmonics.  

 

The frequency positions of the LPC peaks are more or less in agreement with the vocal 

tract peaks (except in part C of the picture). In both cases, when F0 is 200 Hz and F0 is 

300 Hz, there are three peaks visible in the range 3000...5000 Hz where the vocal tract 

shows four peaks. The order of the LPC filter should allow for 9 peaks totally, however, 

so in that case we should expect a display of all 4 peaks in this range. 

 

When F0 is as high as 400 Hz (fig. 20.8C) the LPC analysis can even detect four 

formants in this range. However, the peak positions of the first two of them are shifted 

considerably. Furthermore, the most important first formant of about 600 Hz (the 

lowest in frequency) has been shifted a lot (almost to the first harmonic) in this LPC 

graph, and a ‘new’ peak between the first and second peak emerges. Apparently, as in 

spectrum B, here the LPC spectral peaks tend to shift to the nearest harmonics as well. 

This LPC graph of the 400 Hz vowel is therefore of very limited use in practice.  

 

Of course, the undersampling of the vocal tract at high F0 (especially in the B and C 

parts of the picture) causes lack of details of the vocal tract in the (green) graphs of the 

windowed sinc cepstral smoothing so that in the range 3000...5000 Hz only three peaks 

in B and two peaks in C are visible. The deviations from the values of the vocal tract 

graphs, however, seem smaller than in the LPC cases. It appears that this type of cepstral 

smoothing is more reliable when measuring spectral energy distribution of the vowel 

signals, especially in case of high fundamental frequencies.  

 

In addition, there are a number of criteria for the use of LPC for formant estimation, as 

described in the literature about LPC analysis. To mention some in simplified form: 

 

1. The order of the LPC filter must be chosen in advance. In the example above 

the LPC order was adapted to the number of vocal tract filter peaks, but in 

practice, the vocal tract filter is not known. The number of (prominent) formants 

depends on the type of vowel (an /u/ vowel usually has fewer formants than an 

/a/ vowel, for example).  

2. The frequency range has to be limited (by downsampling of the signal), 

otherwise a great number of formants must be ‘placed’ beyond the practical 
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formant range to cover the entire frequency range to the Nyquist frequency, 

needing a very high filter order which would increase the chances on false 

positions of formants under consideration (the limitation of the formant ceiling). 

3. Nasal vowel sounds can cause dips (zeros) in the vocal tract filter. The LPC 

filter defines nothing but peaks and then may produce errors when ‘trying to 

imitate’ the vocal tract filter. 

4. The spectral slope has to be compensated by pre-emphasis of the speech signal. 

That would not be a problem if the spectral slope is known but in practice it is 

not and may vary a lot, depending on the speaker and the way the vocal folds 

are used. The standard 6 dB/oct. often would not be the right compensation. 

5. There must be a sufficient number of samples within the window applied (the 

LPC frame). Therefore, a window length of one F0 period, for performing a 

period-by-period analysis for example, can only be used when the F0 is not too 

high. 

6. Noisy sounds will often cause a great number of incorrect peak positions. 

 

Adding the findings of the LPC experiment as described: 

 

7. Bandwidth data are not reliable in practice. 

8. Peaks may be totally absent or peaks may emerge in wrong positions when the 

F0 is high. 

9. ‘Prominences’ of peaks cannot be estimated reliably from the LPC filter. There 

seems to be only a weak relation between the peak heights and shapes of the 

analysis and those of the vocal tract functions of the vowel sounds. 

 

In relation to the last item a general remark. When trying to reconstruct ‘difficult’ 

formants from speech sounds one should realize that if the analysis used does not show 

information about the formant frequencies one expects to be present, this should be 

inherent to the signal itself and preferably not be caused by some limitation of the 

method of analysis. One would like to detect as much as possible of the underlying 

vocal tract function in the signal part of interest. So, when the spectral ‘undersampling’ 

limits the information about a peak of the vocal tract filter function, this should not 

result in a peak at a different frequency, and also not in a peak with a very small 

bandwidth.  

 

Summing up the advantages of the windowed sinc cepstral smoothing over the LPC 

method for formant measurements: 

1. No limitations to the setting of the frequency range (no formant ceiling). 

2. No critical setting of filter parameters (apart from the necessary adaptation to 

the local F0). 

3. Spectra of nasal sounds can be measured without difficulty. 

4. No need to compensate for the spectral slope. 

5. It is possible to make a period-for-period tracking of the spectrum by isolating 

one period and smoothing its DFT components. High F0 values may only result 

in low frequency resolution, not in wrong peak positions and heights. 
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6. The susceptibility to noisy sounds is much less than that of LPC and can even 

be limited by applying a relatively long window in case of a steady signal part 

so that the noise is attenuated by averaging. 

7. The bandwidth data are much more reliable and the ‘prominence’ of the peaks 

can be easily valuated. The spectra seem to be related more directly to the 

perception of speech sounds. 

 

(This summary of advantages also applies to some extent to the Gaussian filtering 

method. In that case, as regards item no. 5, an isolated period can be recirculated to 

make a signal segment of sufficient length.) 

 

The limitations of the windowed sinc cepstral smoothing can be summarized as: 

1. The filter parameters (i.e. the sinc function) must be adapted to the local F0. 

2. When applying a window to select a part of the vowel sound, its length should 

be limited, dependent on the F0 variation. 

3. The measured bandwidths of low formants are increased, depending on F0. 

(which is a property of the signal, not of the analysis method). 

4. The computation efficiency is low.  

 

We may conclude that, from the methods described, the windowed sinc cepstral 

smoothing is the best method for extracting formant peaks from voiced speech vowel 

sound sections, provided that the cepstral filter properties are matched with the (local) 

F0 values. 

 

The methods for estimating formants mentioned so far are only a few of the many 

measuring strategies that have been developed over time. More recent investigations 

often focus on the higher level of speech perception in the brain and analyze larger parts 

of speech so that the context of the word or message plays a major part in formant 

estimation. Having knowledge about the limitations of what can be measured from local 

segments, however, is important for separating the analysis results caused by context 

information from those caused by signal properties.  

 

No doubt, of all the methods for speech formant estimation, the LPC analysis is by far 

the most popular. This is probably caused by its high processing efficiency and assumed 

high accuracy. Although the comparison of LPC analysis with other methods as 

described here is not very extensive, it may be wise to give a warning to be careful in 

the selection of a spectral analysis method for speech signal segments and not ‘blindly’ 

use LPC, especially when speech perception is involved. 

 

By using the link “View cepstral smoothed spectrum at cursor script” on my home page 

you may download a script to experiment with the harmonics interpolation method. The 

script contains an instruction on how to add a button in Praat’s sound editor for this 

purpose. 
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21. Unvoiced speech 

 

Many speech sounds are produced without vibration of the vocal folds: these are the 

voiceless sounds. Some of them are produced by building up some air pressure by 

blocking the air flow for a short time, followed by a sudden release of the obstruction. 

The resulting sounds are thus a combination of a short silent interval and a ‘popping’ 

noise. This is why they are called voiceless plosives (mainly the sounds of p, t and k). 

In the spectrograms you may locate them by the presence of relatively strong high 

frequency components during a short time. Other voiceless speech sounds are the 

voiceless fricatives: the vocal tract is narrowed at some place, leaving only a narrow 

opening, which causes the air flow to become turbulent. This produces a hissing noise, 

its timbre (i.e. spectral properties) depending on the position of the constriction in the 

vocal tract, and the size of the opening left. When this constriction is realized by the 

vocal folds (without letting them vibrate!) the entire vocal tract will filter the sound of 

the source in the same way as described before (section 19). This is how whispering 

vowels are produced.  

 

To estimate formants of whispered vowel sounds, or spectral properties of fricatives in 

general, we should take into account the random fluctuations of the airflow, causing 

random variations of its spectrum. In other words: we have to handle the analysis 

statistically by proper averaging, as mentioned in section 15 concerning noise. See 

fig. 21.1A where a spectrum of 0.1 seconds of a sustained whispered /a/ sound is 

displayed (black graph). Obviously, the peaks of the spectrum, i.e. the formants, cannot 

be extracted accurately from the huge number of peaks. In addition, in spite of proper 

windowing of the signal (a Hann window is applied), the spectrum shows many very 

‘deep’ dips: apparently, some of the bins of the spectrum contain almost no energy. As 

the time length is 0.1 s the spectral bins are only 10 Hz wide. First of all, we need wider 

frequency bins to increase the probability that they contain components with some 

energy. In other words: we need smoothing in the frequency domain for averaging 

frequency components. The red line in fig. 21.1A shows the same spectrum smoothed 

by a Gaussian window of 100 Hz bandwidth. The number of peaks has been limited 

greatly although the number of ‘formants’ seems implausible. Besides, in fig. 21.1B the 

spectra of a number of separate 0.1 seconds parts of the whispering /a/ have been 

smoothed by the same 100 Hz Gaussian window. The differences between the 

individual spectra are quite high, showing that the formants are not estimated with 

reasonable accuracy. In fig. 21C the lengths of the whispered separate /a/ parts were 

increased to 2 seconds. Now the number of formants as well as their positions seems 

much more reliable. (The remaining differences are mainly caused by the ‘natural’ 

speech production variations.)  

 

We may conclude that for analyzing fricative speech sounds there is a necessity for 

averaging spectra of steady parts with sufficient lengths of similar phonemes. In most 

cases the signal of only one fricative in a normally uttered sentence will not produce 

enough information for estimating its spectrum reliably. For estimating formants of a 
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speaker’s fricative phonemes with some accuracy, many measurement positions of 

identical fricatives should be used, while accepting some broadening of the peaks 

caused by the natural differences. 
  

 
 
Fig. 21.1. A: Spectrum of 0.1 s of whispered /a/ (black line), and its Gaussian smoothed 
version with B=100Hz (red line). B: Gaussian smoothed spectra of eight separate 
0.1 seconds parts of whispered /a/ on top of each other. C: The same as B, now of 
2 seconds parts. 
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22. Prosodic features 

 

In addition to the spectrogram, which shows the varying spectrum along the time axis 

of an utterance, there are a number of other acoustic speech measurements as functions 

of time. Often, the variations in time of these acoustic measurements occur on a larger 

time scale than those in between the phonemes or segments. As they give the sentence 

or utterance its structure, these speech properties are called prosodic features. Because 

of the larger time scale of these features compared with phonemes or segments, they 

are also called suprasegmental variations. Naturally, these variations are not absent 

within the phonemes or short segments but within these short time intervals they are 

much smaller and often regarded as being constant. In fact, many types of 

measurements can only be performed from a certain length of signal (the window used) 

so that the value obtained must be regarded as some kind of average over the window 

length at a specific position in time. For variations of a single variable along the time 

axis one speaks of a contour like pitch contour, which shows F0 as a function of time, 

and intensity contour which shows the logarithmic intensity as a function of time.   

 

In linguistics some terms are used to describe prosodic properties of speech which refer 

to the perception by the (generalized) listener, like intonation, accent, pace, and many 

more. Mostly, they should be regarded as subjective properties. At best they can be seen 

as a combination of objective measurements. For example, intonation depends on pitch, 

intensity and segment length, accent depends on intensity, length of syllable and pauses, 

pace (or speech rate) depends on the average number of words or syllables per unit of 

time, etc. In addition, the individual contributions of the various objective 

measurements to the ‘strength’ of a subjective feature are dependent on the language, 

the speaker and even on the contents of the spoken sentence itself. Obviously, this is no 

subject for this book, which will not go beyond the handling of basic objective signal 

measurements. There is no need to: there are many libraries full of books about 

linguistics. Only a few basic measurements of prosodic features will be described in 

some detail here. 
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22.1. Pitch1 

 

Fig. 22.1.1 presents an example of a pitch contour of a spoken phrase, measured in 

Praat, together with its waveform. (The phrase is uttered by a male English native 

speaker.) The default method in Praat for pitch measurements is autocorrelation, a 

method already mentioned in section 16 (see fig. 16.4). The program calculates the 

autocorrelation of a Hann- or Gaussian-windowed part of the signal and takes the point 

of time where the autocorrelation has its maximum (of course excluding the maximum 

at T=0). If this time shift is T the pitch value is 1/T. The window moves on along the 

time axis and the autocorrelation is calculated anew to compute a new pitch. The 

window moves with small steps to achieve sufficient overlap so that a smooth pitch 

curve can be displayed. The window length must be sufficiently long to contain a few 

periods of the lowest pitch but not too long to enable to display the curve with some 

detail. The Hann-window length that Praat uses is three times the lowest pitch period 

that is defined by the user. Praat’s default value of the lowest pitch is 75 Hz so that the 

Hann window has a length of 40 ms. The autocorrelation will also present peaks at 

 
1  As mentioned before in section 16, the word pitch indicates a subjective value. Nevertheless, the F0 

is meaned here. 

 
 
Fig. 22.1.1. a: Waveform of spoken sentence section. b: Its pitch contour measured 
with Praat’s autocorrelation method with 75 Hz as lowest limit. c: As b. but lowest 
limit now 65 Hz. 
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shifts which are multiples of the period. When the periods of a signal part are highly 

identical, these multiple period peaks can be equally high or even higher than the first 

one. So, when the maximum correlation is found at twice the period, for example, the 

pitch found at that position will be one octave lower than the real value. To avoid this, 

there has been built-in a small bias to the higher pitch values. When the signal is noisy, 

or has a poor periodicity, these ‘octave jumps’ sometimes cannot be avoided 

completely, however. The lowest pitch, therefore, should preferably be set higher than 

half of the expected values. 

 

There is a second reason why it is preferable to avoid very low values of the lowest 

pitch setting. In fig. 22.1.1.b the pitch contour was made with the default lowest pitch 

setting of 75 Hz. At the marker the pitch seems absent whereas in the waveform some 

periods can be seen at that position. Lowering of the lowest pitch to 65 Hz causes the 

pitch to emerge there, as shown in fig. 22.1.1c. However, at the two marked areas the 

pitch is absent, which obviously is not correct. How can that be? When the lowest pitch 

is set to 65 Hz the window length is so long that the pitch within the window (which is 

more than 46 ms now) varies so much that the autocorrelation peak is lower than the 

voicing threshold (another default pitch setting). Lowering this voicing threshold will 

solve this but will produce more spurious pitch values in other cases.  

 

Obviously, apart from the problem that a too high setting of this lowest pitch will miss 

very low pitch values, a setting like this will also increase the probability of occurring 

upward octave jumps. This could occur especially when a strong low frequency formant 

is present. Avoiding upward octave jumps by lowering of the highest pitch setting 

cannot be applied, because the pitch range of natural voices covers more than one 

octave. The general message is that the pitch parameter settings, especially the lowest 

pitch value, should be defined with care. 

 

In Praat, instead of the Hann window, the Gauss window can be chosen. It creates the 

possibility to measure pitch with very high accuracy in cases of steady parts of the 

speech. However, the effective window length is twice the length of the Hann window 

which means that the problem of the fast-varying pitch as described above will be 

greater. As the autocorrelation method itself already offers high accuracy pitch 

measurements, the Hann window will be a practical choice for most speech pitch 

measurements. 1  

 

In addition to the autocorrelation method for pitch measurements, Praat offers the cross-

correlation method. While, in each measurement position, the auto-correlation method 

takes the correlation of the complete windowed part with itself, the cross-correlation 

method uses a variable window length.  See fig. 22.1.2 for an explanation. At each side 

of the measurement position (mp) a window is placed such that both windows are 

adjacent to each other and have equal lengths. The windows start with the shortest 

 
1  The autocorrelation method in Praat has been made very accurate by modifying the ac data by 

dividing each ac function of the windowed part by the ac function of the selection window. See 

Boersma [1] 
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length necessary to contain the defined highest pitch period. From the two windowed 

signal parts the cross-correlation factor is computed, by multiplying and integration 

(see for an explanation of this cross-correlation factor section 6 about signal 

comparison). Now the two windows are increased one step in length and the new cc 

factor is computed again. This process goes on until the window length for measuring 

the lowest pitch period has been reached. Now the window length where the highest cc 

factor occurred is equal to the period of the most probable pitch at the measurement 

position1. This procedure is repeated at each measurement position. 

 

This cc method is able to follow the pitch movements in more detail than the ac 

method and therefore can better cope with the lowest pitch problem of the ac method.  

The noise independency and accuracy, however, are not as high as the ac method. In 

general, for normal voices the ac method is the best compromise whereas the cc is 

more suitable for pathological voices, where the pitch periods may vary irregularly. 

  

 
1  In fig. 22.1.2 the windows drawn are rectangular for simplicity of explanation. In reality, however, 

a Hann or Gauss window is applied, as mentioned before. 

 

 
Fig. 22.1.2. Cross-correlation method for pitch measurement. The equal duration of the 
adjacent parts is varied from the lowest to the highest limits. The duration which gives 
the highest cross-correlation between the left and right part is the most probable pitch 
period. 
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22.2. Intensity 

 

Usually. the different speech sounds within a sentence have very different intensity 

values (‘volumes’) due to the way they are generated. In addition, intensity variations 

within a sentence are ‘deliberately’ altered by the speaker, to give the speech its 

dynamic structure. As we know from section 5 the intensity of a sinusoidal wave refers 

to its power, which relates to the square of the amplitude. The same applies to the speech 

waveform which means that all instantaneous values of the signal have to be squared, 

summed over a specific time period and averaged. What time period? If we want to see 

all fast-changing details of the intensity contour we might prefer a very short window 

which moves along the time axis. However, we are not interested in the short time 

intensity variations within the periods of the waveform. Therefore, the chosen setting 

will be a compromise between time resolution and allowed pitch ripple. See fig. 22.2.1 

for an example of intensity contours of a speech vowel sound, applied with different 

window lengths. To avoid the pitch-synchronous intensity variation as a result of a short 

window we should average over at least two or three times the longest period that occurs 

in the signal, i.e. the period as determined by the lowest pitch. In general, a certain 

setting for the intensity measurements remains constant while the pitch period can vary 

a lot. Therefore, the chosen setting will be a compromise between time resolution and 

allowed pitch ripple. See fig. 22.2.1C where still some pitch ripple is visible in a low 

pitch part of the utterance, while the window length used here is 20 ms.  

 

Because the setting of the window length should depend on the pitch period, in Praat 

the window length used for measurement of the intensity contour has been made equal 

to the window length defined for measuring the pitch contour, i.e. three times the 

defined lowest pitch period. In addition, a (pseudo) Gaussian window is applied to 

avoid sudden steps in the contour. Furthermore, to create a smooth intensity curve, the 

time step chosen of the moving window is shorter than the window length which creates 

some overlap. In Praat, the time step is ¼ of the window length. Together with the 

window type used, this results in a negligible residual ripple (0.00001 dB) for a 

periodical signal having the lowest pitch defined and a constant intensity. So, in 

practice, the ripple can be regarded as suppressed completely provided that the window 

length applied is derived from the longest pitch period. To avoid a big loss of time 

resolution, however, a certain F0 ripple can be allowed for, like in the example of 

fig. 22.2.1C. 

 

Commonly, the intensity contour values are displayed using a dB scale. As you may 

know from section 2 and 3 the linear values of the waveform are regarded as sound 

pressure levels (SPL) and the dB values refer to the hearing threshold of 20 µPa. 

However, as explained in section 3, there is no calibration of the waveform values due 

to the unknown amplification and sensitivities of the sound equipment used. The dB 

values of the intensity contour, therefore, must not be regarded as the representation of 

real sound intensities that occurred during the recording. 
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Reminding note: because a sound recording in wav format cannot have values higher 

than 1 or lower than -1, the theoretical maximum value which can occur in the intensity 

object of Praat is 94 dB, corresponding to 1 Pa. In that case the waveform will contain 

only values equal to 1 or -1 as no values exist in between. What is the maximum 

 

 
 
Fig.22.2.1. Praat’s intensity contours of spoken word “excitable”. A: waveform. B: 
intensity measured with 7.5 ms window. C: the same with 20 ms window. D: the same 
with 60 ms window. 
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intensity if the wav sound is a sinusoidal wave? We know from the box RMS of 

section 5 that the intensity of a sine wave with amplitude A is ½A2. The maximum 

(unclipped) amplitude of the sine wave is 1 which means that the intensity value is ½. 

As log(½) = -0.3 the dB value is – 3, so the sine wave cannot have intensity values 

higher than 94-3 = 91 dB. As explained in section 5, the corresponding rms value is 

1/√2 which is about 0.7. 
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22.3. Speech rate 

 

Some types of speech research require to get some figure about the speed of speaking 

by subjects, the speech rate or pace. In many cases this figure is determined by 

measuring the number of spoken syllables per unit of time. The dependence of the 

differences of syllable lengths then is minimized by estimation of the mean of a great 

number of measurements per speaker.  

 

To detect the syllables of many utterances, a program is needed to perform the task in 

an automatic way. The program may use the intensity contour, possibly combined with 

a detection of voicing of the signals, to detect the presence of the syllables. Because of 

the great fluctuations of the intensity values within one syllable and the mostly close 

connection of adjacent syllables, the automatic detection of syllables cannot be 

accomplished without some errors. Fig. 22.3.1 displays an example of an output from 

a program (a Praat script, which is published by N. de Jong and myself, see ref. [6]) 

which has proven to work relatively accurate, applied to the spoken sentence of 

fig. 22.1.1. In this program, among other things, the intensity contour is measured in 

two steps: one with a long and one with a short window. In most cases the long window 

intensity contour will show one peak at each syllable and the short window contour will 

detect the minima between the syllables. By a combination of the contours the errors 

are minimized. You can see that the last syllable has been counted erroneously as two 

different syllables, as the long window intensity contour counts more than one peak due 

to the exceptional length of this syllable.  

 

This problem must be seen as a general difficulty to handle complex tasks (like the 

assignment of syllables from spoken sentences) by the measurement of relatively 

simple parameters. Nevertheless, in many cases great improvements can be achieved 

by combining a number of basic measurements. Here, using the pitch contour and/or 

the spectrogram as well, for example, could avoid errors like the one shown. 

 

 
 
Fig. 22.3.1. Automatic detection of syllables in spoken sentence. 
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On the other hand, errors cannot be avoided completely and, therefore, a great number 

of sentences should be measured to be able to apply statistical methods to obtain 

sufficient reliability of the results, even when using only simple parameters.  

 

Anyway, the researcher (as always!) should be aware of the limitation of the 

measurement accuracy of the analysis applied. 
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23. Overall properties of speech signals 

 

On a larger time, scale than that of segments and sentences, there are objective 

measurements possible which may give some statistical information about specific 

‘overall’ speech signal properties. The four most commonly used are mentioned here.  

 

a. Ltas 

 

Naturally, apart from short speech segments, spectra can be made from long speech 

recordings like complete stories told. Hence the name: Long time average spectrum. 

Of course, all detailed spectral information has vanished then because the value of each 

specific frequency in the spectrum is an average of the intensity of that frequency over 

the whole spoken story. Nevertheless, comparison with Ltasses of other speakers may 

give some clues about their speaking behavior. Especially in cases of speech 

impediments or defects Ltasses can be of use. Important to mention here is, to be able 

to compare Ltasses, preferably all recordings should have been made in the same room, 

using the same equipment, because the overall spectral shape depends partly on the 

room acoustics and microphone properties. 

 

As you may know from part A, the spectral bin width of the Fourier transform is equal 

to 1/T where T is the length of the time interval. Therefore, the Fourier spectrum of a 

long sound may contain a tremendous number of points. For example, when the speech 

recording has a length of 60 s, the spectrum from 0 to, say, 10000 Hz contains 600000 

points! A lot of ‘overkill’ as the display of the spectrum will seldom need more than 

1000 points or so. Also because of the great fluctuations of spectral energy along time, 

there is no need to get a very high spectral ‘definition’. For this reason, the Ltas to 

perform can be specified by defining a spectral bin width, which usually is set to 100 Hz 

or so.  

 

In Praat there is no restriction on the maximum or minimum of the sound length. It is 

very well possible to get a Ltas from a short segment. What is the difference then with 

a Fourier spectrum? In fact, there is no difference if you set the Ltas bin equal to that 

of the Fourier spectrum, apart from the underlying structure: the Fourier spectrum 

contains linear values whereas the Ltas contains dB values. Also, the Fourier spectrum 

is complex: it has cosine and sine values which makes it possible to inverse Fourier 

transform the spectrum to sound whereas the Ltas cannot be reversed transformed to 

sound again. But the displays of Fourier spectrum and Ltas are exactly equal if their bin 

widths correspond. 

 

In the case of a short sound the ‘long time” part in the name of the Ltas does not make 

much sense and you could regard the Ltas then as a ‘rebinned’ Fourier spectrum. The 

purpose of using Ltas for short segments could be a globalization of their spectra. In 

most cases, however, a spectral smoothing (i.e. as mentioned in section 20) is preferred 

instead which omits the sudden steps that may occur in the Ltas. 
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b. Jitter 

 

When the pitch of a voiced speech sound, like a vowel, is held steady, all periods of the 

fundamental frequency will have not exactly the same duration. There exist some 

fluctuations of the pitch: the jitter. Usually these fluctuations occur at random and are 

very small. In some cases, these fluctuations follow a pattern: the glottal period lengths 

may alternate between two values (which results in a weaker subharmonic of half the 

nominal pitch as the lowest pitch comprises two ‘original’ periods). Also patterns which 

comprise more than two periods may occur so that lower subharmonics will occur. A 

third kind of deviation of the steady signal is generated when the vocal folds act like 

two independent sources, each having a (mostly small) different fundamental 

frequency. This latter category counts not as jitter. 

 

When different pitches can be heard at the same time the effect is sometimes called 

diplophonia or triplophonia. In normal voices these regular patterns are mostly 

negligible. Besides, all natural voices will have some small local random variations of 

the pitch periods. These variations must be distinguished from the audible variations, 

generally on purpose by the speaker or singer, like vibrato: a periodic modulation of 

the fundamental frequency at a pace varying from 5 to 15 Hz or so. So, a complete 

‘vibration cycle’ contains about 10 or more pitch periods and on this time scale one 

speaks not any more of jitter. 

 

It is customary to express jitter not as pitch deviations but of the mean of the deviations 

expressed as percentage of the nominal pitch period: 

  

jitter =
100 ∙ ∑ |𝑇𝑖+1 − 𝑇𝑖|

𝑀−1
𝑖=1

(𝑁 − 1)𝑇𝑀
(23.1) 

where N is the total number of periods, Ti the current period in seconds and TM the mean 

length of all periods. Obviously, the jitter can only properly be measured from sustained 

vowel sounds where the pitch is held unaltered. When that condition is met, the 

practical value of jitter for normal healthy voices is about 1 percent or lower. Because 

of the natural pitch gliding variations on a greater time scale, which cannot be avoided 

by the speakers, there exist some methods that take the differences of the current period 

and the mean of some local periods around the current period, instead of only the 

differences of adjacent periods. In this way a gradual increase or decrease of the pitch 

has less influence on the jitter figure because the reference is defined by the ‘moving 

average’ of the local periods. Mostly 1 or 2 neighboring periods are applied, which 

averages 3 or 5 periods respectively. In Praat there are built-in even five different jitter 

measurement methods. Probably, the method according to formula 23.1 (called local 

jitter) is the most widely used. 

 

It will be evident that the reliability of jitter measurements depends highly on the pitch 

measurement method. Some commonly used pitch measuring methods, however, are 
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based on amplitude peak detection and, therefore, much more dependent on the 

presence of noise in the speech signal. To detect the small variations of the pitch due to 

jitter the influence of noise should be of great care so that it is important that the jitter 

measurements should be derived from autocorrelation pitch measurements like the 

pitch measurement method mentioned in section 22.1, which have great noise 

immunity. 

 

 

c. Shimmer 

 

Apart from the pitch fluctuations of a speech sound held steady, like a sustained vowel, 

also the amplitude fluctuations can be measured. From each period the peak-to-peak 

amplitude is measured and, likewise in the case of jitter, the mean difference of peak-

to-peak amplitudes between adjacent periods is expressed as a percentage of the overall 

mean peak-to-peak amplitude: 

shimmer(%) =
100 ∙ ∑ |𝐴𝑖+1 − 𝐴𝑖|

𝑁−1
𝑖=1

(𝑁 − 1) ∙ 𝐴𝑀
(23.2) 

where N is the total number of periods, Ai the current peak-to-peak amplitude and AM 

the mean peak-to-peak amplitude of all periods. 

 

Here again, to limit the influence of ‘natural’ gradual amplitude changes on the 

shimmer figure, a moving average of the amplitudes of a few periods around the current 

one is used. In practice, the number of local periods applied for shimmer ranges to 3, 5 

and 11. 

 

Instead of the peak-to-peak amplitude ratio, sometimes the dB differences are used: 

 

shimmer(dB) =
∑ |20 log(𝐴𝑖+1/𝐴𝑖)|
𝑁−1
𝑖=1

(𝑁 − 1)
(23.3) 

 

 

d. Harmonicity 

 

The autocorrelation (ac) function of a sustained vowel sound offers the possibility to 

measure its harmonics-to-noise ratio (HNR), also called harmonicity. In case of a 

purely periodic signal without noise its autocorrelation exposes maxima at t = 0 and at 

all positions where t is a multiple of T or -T: the period. These maxima are all equal and 

represent the power of the periodic signal (at these positions the signal is multiplied by 

itself and the power is equal to the square of the amplitude). When the signal contains 

noise and the noise is not correlated with the signal (which usually is true in practice), 

the autocorrelation of the noise itself is added to that of the purely periodic component 

of the signal. Now the autocorrelation of the noise itself has only one maximum at t = 0 



164 

 

(because the noise itself is not correlated at all). This means that the autocorrelation 

component at t = 0 for a noisy signal is the sum of the signal component and the noise 

component. See fig. 23.1 for an example of a noisy periodic signal and its 

autocorrelation function. You can see that the maxima of the function are all equal, 

except the one at t = 0. So, for the harmonics-to-noise power ratio we simply have to 

divide the value of the ‘repeated’ maxima by the difference of this value with the value 

at t = 1: 

 𝐻𝑁𝑅2 =
𝑟𝑥𝑥(𝑇)

𝑟𝑥𝑥(0)−𝑟𝑥𝑥(𝑇)
 (23.4) 

where rxx is the autocorrelation function as described in section 16. Usually, just in case 

of the signal-to-noise ratio as mentioned in section 15, the HNR is expressed in dB’s: 

 𝐻𝑁𝑅(𝑑𝐵) = 10 ∙ log
𝑟𝑥𝑥(𝑇)

𝑟𝑥𝑥(0)−𝑟𝑥𝑥(𝑇)
 (23.5) 

 

In fact, the formula is only valid for stationery signals. As, in practice, a sustained vowel 

sound will never be strictly stationery, we need to select and window parts of the sound. 

Moving the window through the length of the vowel sound produces the HNR as a 

function of time: the HNR contour. In Praat, the influence of the window on ac 

measurements is limited by dividing the local ac functions by the ac of the window used 

which results in a high accuracy of the HNR. (For a detailed explanation see Boersma 

[1].) 

 

 
 
Fig. 23.1. Top: part of noisy periodic signal. Bottom: the autocorrelation is the sum of 
the ac of the periodic part (all equal peaks) and the ac of the noise (one peak at t = 0). 
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Of the types of overall measurements of speech described, the Ltas depends mainly on 

the global vocal tract properties whereas the jitter and shimmer give information about 

the glottal source only. The harmonicity is also basically a feature of the source but the 

output is somewhat dependent of the spectral properties of the vocal tract filter. Because 

of their focus on the source signal, especially the latter three types are mainly used in 

cases of pathological voices, generally the result of vocal fold functioning impediments. 

The jitter measurement, in addition, is also well-known in the general field of signal 

analysis, as a measure of oscillator (generator) stability. 

 

The shimmer being a measurement where amplitude is involved, you may wonder why 

its output does not highly depend on the vocal tract filter properties. Naturally, the 

amplitudes of the waveform of different vowel sounds can vary considerably due to the 

change of the vocal tract filter. The shimmer, however, computes the amplitude ratios 

of a few adjacent local periods. Changes of amplitudes as a result of changing the vocal 

tract filter occur on a time scale that is longer than that of the local periods taken as the 

local reference. Besides, the types of overall measurements described are usually 

applied to sustained vowels so that the short term amplitude variations can be regarded 

as being caused by the source properties only. 
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24. Sound data compression 

 

The digital representation of audio signals with high quality needs a considerable 

quantity of bits per second, as we have already seen in section 17. For a stereo audio 

file with CD quality the sample frequency is 44100 Hz and the number of bits per 

sample is 16. In that case the required bit rate is 2 x 44100 x 16 = 1.4112 million bits 

per second, or 176.4 kilobytes per second, as a byte contains 8 bits. Not surprisingly, 

many signal manipulations have been developed to limit the number of bits per second 

to represent the audio signal, i.e. to compress the sound. Formerly, the main reason to 

compress was the limited recording time on computer disks or removable media as the 

storage space was expensive. Now, the costs to store data are extremely cheap: at the 

present you can buy a 2 TB (terabyte) disk for less than 60 dollars, while 1 TB = 1000 

billion bytes = 1012 bytes which can hold more than 1500 hours of CD-quality sound! 

However, in spite of the cheap storage space in computers the need to compress sound 

has remained because of the widely used downloading of audio and video via the 

internet. The internet communication speed has improved a lot but at the moment it is 

still limited to an average of about 15 Mbit/s or so. For audio alone, this is acceptable: 

downloading a 3-minute CD-quality audio file with this speed would take 

3*60*1.4112/15 = 17 s. However, an uncompressed 3-minute video clip with audio, for 

example, contains 562 MB (Megabyte) so this would take 562*8/15 = 300 s or 5 

minutes to download which is not acceptable. In addition, streaming of uncompressed 

video with audio (the data file is played while it is sent) would even not be possible: 

the downloading bit rate is lower than the playing bitrate of the video. 

 

So, for video it is a must to compress the video signal and the pertaining audio, 

therefore, has to be compressed too. Even for audio alone, it is attractive to be able to 

record a lot of music and speech on a small portable device having a flash memory with 

limited capacity instead of a spinning disk, and to send and receive audio files almost 

immediately. 

 

The subject of signal compression encompasses many areas (pictures, video, audio, data 

encryption, etc.) of which we are only interested in audio here. Even limited to audio 

data compression1, about this field alone many books exist and it is beyond the scope 

of this book to describe all of the existing, often quite complicated, methods and 

algorithms. The only intention here is to explain the basic principles of some different 

methods to limit the number of bits to represent the original audio signal, and how to 

do the reverse: to reconstruct the original back again.  

 

First of all, we have to distinguish lossless and lossy compression. The first category, 

as the name implies, are the methods to limit the number of bits in such a way that the 

 
1  In this section the term ‘sound data compression’ is used, as opposed to the term ‘sound 

compression’ which might cause confusion as the latter term is also used for the gradual limitation 

of the momentarily amplitude level of the sound waveform, for example to avoid overmodulation of 

a sound recorder by the peaks in the signal. This type of sound compression is usually performed by 

using a limiter, which is explained in section 27.3. 
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original can be reconstructed completely, without any difference. The second category 

allows for some differences in the reconstructed sounds which are not important or, if 

audio is involved, which are practically not audible by human ears. 

 

As a digital representation of a sound section consists of a number of sample values, 

how can we limit the number of bits that can represent this bunch of values without loss 

of data? We know from section 17 that the amplitude of each sample is approximated 

by one of a fixed set of values. Each value of this set should be represented by a unique 

binary number. When all values are completely unrelated to each other lossless 

compression would not be possible. In that case the probability to occur is the same for 

each value. In practice, however, there is some redundancy: the values have some weak 

or strong relation to each other. As an example, fig. 24.1 shows a histogram for all 

amplitude steps of the spoken sentence as presented in fig. 22.1.1. You can see that the 

amplitude values nearest to zero occur by far the most frequently and that the 

frequencies of occurring of high amplitudes are very near zero. Now the idea is to apply 

a variable length code: fewer bits for amplitude values occurring at high frequencies 

and more bits for values occurring at low frequencies. Of course, there must exist some 

manner then to separate the individual codes from the sequence of bits of a coded data 

stream as the lengths of the individual codes vary all the time. The Huffman encoding 

offers a clever way to accomplish these tasks. 

 

To understand the principle of this Huffman code a simple example: we will encode the 

lower-case characters of the alphabet and the space, which means that we must have at 

least 27 different symbol codes. Table 24.1 gives the relative frequencies of occurring 

of characters using this book as a reference, sorted from high to low frequency (scaled 

by a factor 2000). 

 

 
 
Fig. 24.1. Number of occurrences of amplitude values of all samples in the spoken 
fragment of fig. 22.1.1. 
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Table 24.1. Relative frequencies of lower case characters and space from this book 
(multiplied by 2000). 

 
Fig. 24.2. First six steps to construct the Huffman encoding tree from the table 24.1. 
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The Huffman encoding constructs a tree consisting of only two-way nodes. Its leaves 

represent the characters. Each leaf has a unique position in the tree and a unique path 

to it via the nodes. The construction of the tree starts with the two lowest frequency 

characters. They are combined with a node. This combination will have a frequency of 

occurring which is the sum of the individual frequencies of the two characters. These 

two characters in the frequency table are replaced by the combination and the 

combination is put in the proper frequency position. Now the procedure is repeated and 

finally there remains only one node at the top (the root). In fig. 24.2 the construction of 

the tree from the six lowest frequency characters is shown. 

 

From the sorted table of characters (panel A) the lowest two (z and j) are combined to 

the node so that it gets the frequency 4. From the new array (panel B) the two lowest 

frequency elements are combined and produce a node with frequency 9. After resorting 

the array, it looks like panel C. After three more steps the tree looks like panel F. The 

branches to the left are labeled as 0 and the branches to the right are labeled as 1. All 

texts existing of these six characters can now be encoded by the use of this tree. For 

example, the code of the sequence j k q v x z k v z x is: 

 

01110000011010011000010110010 

 

The procedure is repeated for the rest of the characters until the final root has been 

reached. As all leaves (the characters) exist only at the end of the paths, each character 

has its own unique path and thus unique binary code. The resulting tree is shown in 

fig. 24.3. 

 

As you see, there is no separation between the individual codes of the characters. The 

Huffman coding, however, uses a variable length. Then, how can a Huffman code be 

decoded? The bits in a computer are stored in 8 bits or 16-bit chunks and there are no 

clues in the code to mark the starts or stops of the individual codes. Nevertheless, the 

decoding procedure is simple: handle the bits one at a time and follow the tree from the 

root. Each time a character has been reached, decoding of the next bits starts at the root 

again. As a challenge, you will be encouraged to decode the following sequence of 56 

bits by using the tree of fig. 24.3: 

 

10010111000010000111100010000000110001100001100100001000 

 

If you made no mistake, you will discover that the message contains 14 characters 

(including the space). If the same message were encoded by using “normal” 

fixed-length codes we would need 5-bit numbers as the minimum number of bits 

necessary to represent one out of these 27 elements (there are only 16 numbers of 4 bits 

and 32 numbers of 5 bits). Formally, this can be expressed by: 

 𝑏 = log2(𝑛) (24.1) 
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where b is the minimum number of bits and n is the number of values in the set. For 

n = 27 the minimum number of bits is 4.75 so we would need numbers with 5 bits to 

represent all values individually. Thus, for the message involved we need 14 x 5 bits = 

70 bits. The compression ratio for this message, therefore, is 56/70 or 0.8. Also, the 

compression factor is often used, being (70-56)/70 = 0.2. 

 

In this example, the average number of bits per character is 56/14=4. It is possible to 

compute the theoretical number of bits needed to contain the information of each 

symbol from its frequency table: 

 𝑏𝑖 = log2 (
1

𝑝𝑖
) (24.2) 

Here is bi the number of bits for the ith symbol and pi the probability of occurrence of 

the ith symbol. This probability is equal to its relative frequency. If we divide each 

frequency in the table by the total sum we get the relative frequencies. The probability 

is a number between 0 (it never occurs and bi is infinite) and 1 (it is the only element 

that occurs and bi is 0). It is a well-known formula in information theory but the 

derivation of this formula falls outside the scope of this book. To find the theoretical 

 
 
Fig. 24.3. Completed generation of Huffman tree from frequency table 24.1. 
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average number of bits of all symbols we must add all individual bi’s in the ratio of 

their relative frequencies, i.e. multiply each bi by its pi which leads to: 

 𝑏𝑎 = ∑ 𝑝𝑖
𝑚
𝑖=1 ∙ log2 (

1

𝑝𝑖
) (24.3) 

where ba is the average number of bits of all codes and m is the total number of different 

symbols. This formula, applied to the book text example of 27 symbols, renders a 

theoretical average of 4.1 bits/symbol. The practical average happens to be 

4.14 bits/symbol. The practical average is always higher than the theoretical one 

because the Huffman code lengths do not consist of fractions of bits but have integer 

numbers of bits. Nevertheless, the Huffman codes approximate the theoretical average 

quite nearly for large sets of symbols1.  

 

Likewise, in case of sounds instead of texts, the frequency of occurring of digital 

amplitude values differs for all discrete amplitude levels, as you know from fig. 24.1. 

It will be clear then that also sound files can be compressed by Huffman encoding of 

the sample values. In the example of fig. 24.1 the number precision is 16 bits, which 

means that the whole range (from -1 to 1 pascal) consists of 65536 different values. In 

practice, the absolute peak (positive or negative) of a digital sound is kept below these 

boundaries and the sound of this example has a range of 40200 amplitude steps. From 

each of these steps the frequency of occurring has been measured. Using the 

formula 24.3 the theoretical number of bits turns out to be 12.6 which causes the 

compression factor to be 0.2125.  

 

While Huffman encoding offers a completely lossless solution, the compression ratios 

are not very impressive. For texts, big improvements have been made by encoding 

combinations of characters and other methods to take advantage of the redundancy in 

texts. We will not focus further on text encoding as it falls outside the scope of this 

book. Besides, for sounds these methods are not very appropriate. Even the Huffman 

compression ratio found in our example above will generally approach a limit when the 

sound lengths increase. (For music sounds the distribution of probabilities of sample 

values will tend to a Gaussian of which the average variable-length code is only about 

1.2 bit lower than the fixed-length code. On 16-bit precision sounds this means a 

compression factor of only 0.075.)  

 

So, it is necessary to find out how redundancy in speech and music sounds can be used 

in a different way. One of the properties of sounds is the frequently occurring of 

intervals of absent signal or at least intervals having amplitudes that are below the first 

amplitude step from zero. In those cases, sequences of many samples with zero value 

occur. Instead of encoding sequences of many zeros, only one code for zero and the 

number of repetitions is encoded. Of course, for this run length encoding there must 

 
1  There are other coding systems that approach the theoretical average even closer, like arithmetic 

encoding which defines the whole set of symbols as only one fractional number that equals its 

probability of occurring. Generally, the number of digits of this number will be much greater than 

the number precision of computers can accept, so that the digits are distributed among many bytes. 

Details of this arithmetic encoding deviate too much from the subjects of this book. 



172 

 

be some strategy to discriminate between numbers of repetitions and the codes that are 

repeated, which will need some marking bits. In practice, when four or more elements 

occur in sequence, the run length encoding will already produce some compression. It 

will be evident that, especially in speech sounds, many zeros occur. 

 

Another property that can be used for compression is that sample values are, to some 

extent, dependent of preceding sample values. In practice, big amplitude steps from one 

sample to the next one is quite exceptional so that it will be advantageous to encode the 

(mostly small) differences between consecutive samples instead of their actual values. 

(This works as a differentiator, as you may know from section 18.) As ‘normal’ 

digitizing is called PCM (Pulse Code Modulation, mentioned in section 17), encoding 

the differences is called DPCM (Differential PCM). Combining DPCM and Huffman 

encoding of our example sound yields a compression ratio of about 0.64 (compression 

factor = 36%). All encoding types described up to now are lossless: the originals can 

be reconstructed without any error. 

 

All methods described so far take PCM samples as input. There are, however, methods 

that control the sampling itself, i.e. the analog to digital conversion (ADC), in different 

ways to limit the number of bits. Examples are the µ-Law or A-Law conversions which 

are based on the probability distribution of amplitudes of practical audio signals, as 

shown in fig. 24.1. The nearer to zero the amplitude values are, the more frequently 

they occur. In addition, a property of the human hearing is that low intensity signal 

components during the occurrence of high intensity components tend to be masked by 

the high intensities. Now, the idea is to apply a variable amplitude step depending on 

the magnitude of the signal. ((adapted step size)) For this reason, the formulas of the µ-

 
 
Fig. 24.4. AD conversion with variable step size according to A-Law function. 
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Law or A-Law conversions modify the analog input level according to a logarithmic 

relation.  

 

The formula which modifies the analog input level according to the A-Law relation is: 

 𝑓(𝑥) =
𝑠𝑔𝑛(𝑥)∙𝐴∙|𝑥|

1+ln(𝐴)
⁡⁡⁡(0 ≤ 𝑥 ≤

1

𝐴
) (24.4a) 

 𝑓(𝑥) =
𝑠𝑔𝑛(𝑥)∙(1+ln(𝐴|𝑥|))

1+ln(𝐴)
⁡⁡⁡(

1

𝐴
≤ |𝑥| ≤ 1) (24.4b)

  

Here represents x the analog input level. The constant A is 87.7 by convention. The 

values of f(x) are quantized with the ‘standard’ PCM method. The total number of steps 

can be limited then without too much loss of quality. See fig. 24.4 for an explanation 

of its principle. In the figure, the A-Law converted output values are quantized into 128 

discrete steps, i.e. into 7-bit numbers, as an example. 

 

The µ-Law is a slightly different conversion which uses the formula: 

 𝑓(𝑥) =
𝑠𝑔𝑛(𝑥)∙ln(1+𝜇∙|𝑥|)

ln(1+𝜇)
⁡⁡⁡(0 ≤ 𝑥 ≤ 1) (24.5) 

Here the constant µ is set to 255 by convention. The two functions are almost identical, 

only in the vicinity of zero there is a small difference. While the µ-Law conversion is 

the standard for America and Japan, the A-Law conversion is the one for Europe 

mainly. 

 

The principle of the differential PCM mentioned above can also be applied to the analog 

values: instead of the analog values themselves, the differences between analog values 

at regular adjacent time positions can be converted and quantized. In this case, the 

process is called Delta Modulation (DM). The number of bits applied for quantizing 

the differences can even be limited to only one provided that the time steps are 

sufficiently short, i.e. the sample frequency sufficiently high. For this 1-bit ADC, see 

the functional diagram in fig. 24.5 which shows one of the methods to realize a 

delta-sigma modulator. Here, the solid lines represent analog signals and the dotted 

lines represent digital signals. The analog input signal is compared with a reference 

voltage, coming from a capacitor (C). A capacitor (or condenser) can be seen as a device 

which can be loaded or unloaded to any voltage and hold it when the charging or 

discharging stops. When the input voltage is higher than the reference voltage, the 

comparator produces a digital ‘1’ at its output. Reversely, when the input voltage is 

lower than the reference, the output is a digital ‘0’. The ‘clock’ produces pulses at 

regular time intervals with a high rate. At each clock pulse the comparator output is 

stored in the 1-bit data memory until a new clock pulse arrives. The 1-bit data stream 

controls a switch which charges the capacitor a small amount when the bit is 1 and 

discharges the capacitor the same amount when the bit is 0. When, after one or more 

clock periods, the capacitor has reached the input voltage, the comparator changes its 
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output and from the next period on, the capacitor voltage starts changing into the other 

direction. When the input remains zero, for example, the bit stream at the output 

changes at each clock period so that a continuous 1-0-1-0… sequence occurs at the 

output.  The voltage at the capacitor then fluctuates with small values around zero while 

its mean is exactly zero. In fact, the voltage steps from the switch are integrated. The 

 
Fig. 24.5. AD conversion with delta-sigma modulator. 
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Fig. 24.6. Signals of delta-sigma modulator. Top: input signal (bold line), together with 
signal at capacitor (zigzag line). Center: 1-bit digital output stream. Bottom: clock 
pulses. 
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Greek letter delta is often used to express a difference while the Greek sigma refers to 

addition. The ‘delta’ in the name refers to the difference between input and reference, 

while ‘sigma’ refers to the addition of a part of the difference to the reference voltage. 

Fig. 24.6 shows the wave forms at different positions in the delta-sigma modulator. For 

achieving some accuracy, the 1-bit data stream should have a very high sample 

frequency, in practice about several megahertz. This, in principle, makes the system 

suitable for feeding the data stream directly into serial inputs, like digital audio disks, 

recording onto SD cards and USB inputs. Nevertheless, the recording devices (pc’s or 

digital audio recorders) are designed in such a way that the data stream is converted 

into, for example, 16 or 24-bit numbers, as there is always the need to process the signal 

(like filtering and labeling) before it is recorded onto the medium.  

 

To convert the 1-bit data stream back into an analog signal, obviously the lower part of 

fig. 24.5 can be used. It converts the data stream to the voltage at the capacitor which 

is an approximation of the original signal. The approximation can be made as accurate 

as needed by applying a sufficiently high clock frequency, i.e. sample frequency, and 

an appropriate charging/discharging rate. 

 

The sigma part of the delta-sigma modulator can be seen as an adaptation of the 

differences. Therefore, the counterpart of the delta-sigma modulator in the digital 

domain is Adaptive Differential PCM (ADPCM). Here the magnitudes of the 

differences are decreased by taking into account the value or values from one or more 

earlier differences. This reduces the number of bits necessary to encode the differences.  

Using a number of earlier values to ‘predict’ the next difference is similar to the LPC 

(Linear Predictive Coding) mechanism as mentioned in section 20. 

 

(Of course, the adaptation of the differences by using more than one earlier differences 

can also be done in the analog domain of the delta-sigma modulator.)  

 

All these Delta Modulation and ADPCM compression types, however, are not lossless: 

decreasing the number of bits for encoding the differences, together with the size of the 

time step (the length of the clock period) cause that some deviations from the original 

will occur. (In principle, all analog to digital convertors are not lossless: the discrete 

steps always mean an approximation of the original continuous analog signal, as 

explained in section 17 about sampling.) 

 

A great deal of the many lossy compression methods is based on the properties of the 

human hearing. As an example, when a strong frequency component and a weak one in 

the spectral neighborhood are present at the same time, the weaker component is 

masked by the stronger one. Even when two frequency components in a sound have 

equal intensities, the perception is as if only one (mean) frequency is present, provided 

that the frequency difference falls within the so-called critical band (cb). This critical 

band depends on the frequency and intensity but as a rule of thumb it can be stated that 

it is about 19% of its central frequency when this frequency is greater than about 1000 

Hz. Below 1000 Hz the cb is found to be rather constant (about 100 Hz). The ability of 
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frequency discrimination (or selectivity) should not be confused with the ability to 

discriminate between frequencies of separate sounds. For example, when tuning 

musical instruments by listening to them in succession, people are able to hear 

differences of about 0.2 % or even less. 

 

Masking occurs also in the time domain: a signal with a weak intensity within about 

10 ms or less from the end of a signal with high intensity is masked as well. 

 

To make use of the properties of the human sound perception for compression can be 

quite complicated. Many compression methods have in common that the frequency 

range is divided into bands, about the size of the cb. The time signals of them are then 

processed separately to achieve an efficient individual compression strategy for each 

band. Because of the huge number of different compression systems developed in the 

course of years we will suffice here to mention only a few principles of the mp3 coding 

which offers a great compression ratio (usually 1/11) and a very satisfying fidelity of 

the sound quality. Mp3 is short for MPEG-1 Layer III where MPEG stands for Motion 

Picture Expert Group. It was originally developed by the Fraunhofer Institute in 

Munich, Germany, and in a later stage adopted by the MPEG as the sound part of their 

video compression format. 

 

Although the details of the mp3 coding are very complicated, a few principles can be 

explained from the basic knowledge of the subjects earlier discussed in the book. First 

of all, a filter bank divides the spectrum of the PCM sampled sound to be compressed 

into a number of bands in order to be able to process the outputs of these filters 

individually. Then all limitations of the human hearing can be used optimally for each 

frequency band. The output signals from the filters are processed in limited intervals of 

time: the frames. From each frame, a transform into the frequency domain is performed. 

On these spectral components, various compression processes are applied by limitation 

of the quantizing steps for the spectral data, using the masking properties as mentioned 

above. For example, when spectral components are within the range of a specific cb, 

the number of the quantization steps for the components can be limited to the number 

which keeps the quantization noise just inaudible. The remaining stream of limited 

sample values, in turn, are compressed by Huffman coding to limit the data stream even 

more. The result is converted into parts of a fixed number of bits to represent the data 

in a decodable stream of numbers.  

 

As you will remember from the first sections, the transformation into the frequency 

domain means that the result contains components for sines and cosines, or components 

for magnitudes and phases. The transform used here, however, uses only cosine 

components, hence it is called the Discrete Cosine Transform (DCT). How is it possible 

then that the original can be reconstructed from only cosine components? The DCT 

uses a simple trick: firstly, from the frame of samples, make a mirror by reverse it in 

time, then concatenate it with the original so that a symmetrical time function emerges. 

From section 6 you may remember that a symmetrical sound like this is an even function 

which has a Fourier transform with contains only cosine components. So, an inverse 
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Fourier transform produces the symmetrical function back again. Extraction of the 

non-mirrored half of this function returns the original. See fig. 24.7 for an explanation. 

(Of course, it is not necessary to calculate the cosine components for the whole 

symmetrical function. The multiplications of the negative time part render exactly the 

same results as those of the positive time part so that the number of multiplications 

within the transform can be halved.) As a consequence, the DCT uses the double length 

of the ‘period’, causing the ‘harmonics’ to be 1/(2T) Hz apart, i.e. the number of 

components is doubled, compared with the DFT. Whereas the DFT uses n cosine values 

and n sine values, the DCT uses 2n cosine values.  

 

What is the use, then, of the DCT whereas the number of spectral components is equal 

to the DFT’s? In fig. 24.7 you can see that most of the higher frequency components 

have quite low energy, which is a general property of spectra of practical sounds. Now 

the DCT, stronger than the DFT, concentrates almost all of the spectral energy in a 

small number of components, a property which can be used for limitation of the 

necessary number of bits for the quantization without too much distortion of the signal. 

 
 
Fig. 24.7. Discrete Cosine Transform. Top: arbitrary selection of signal part. Center: 
addition of mirror of part doubles the ‘period’ length. Bottom: DFT of symmetrical 
sound contains only cosines. 
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But the DCT offers an additional advantage. As has been explained in section 13, the 

boundaries of the selected signal parts effect their spectra. So, when the sound must be 

reconstructed from the spectral components, it is necessary to apply a suitable window 

but also overlapping of the sequential windowed intervals. This overlapping ‘costs’ 

extra encoding bits. Now, with the DCT it is possible to apply 50 % overlapping without 

the cost of extra bits. This overlapping version of the DCT is called the Modified 

Discrete Cosine Transform (MDCT). As the explanation of this trick is quite 

complicated we will omit it here. Besides, there exist many books about the details of 

the MDCT. This clever modification makes it possible to reconstruct the original from 

the consecutive spectral data without any loss. Nevertheless, the MP3 coding success 

is mainly due to the possibilities to limit the precision of the spectral components, using 

the various masking properties of the human hearing, so that the compression achieved 

occurs practically without audible effects. Fig. 24.8 shows a (simplified) functional 

diagram of the MP3 coding system. Consecutive parts of the PCM are shifted into 

buffers of 512 positions (the frames) and filtered by a filter bank of 32 bands. To each 

output a window is applied with variable length, dependent on the spectral contents of 

the input signal (fast varying input needs short windows for good time resolution, 

slower variations need longer windows for good frequency resolution). This spectral 

information is provided for by the system block ‘FFT’ which is a parallel fast Fourier 

transform of 1024 samples into frequency points. From this FFT the window lengths are 

controlled. The windowed filter outputs are transformed into the frequency domain by 

the block ‘MDCT’. All outputs of the MDCT are quantized with individual controlled 

accuracy, defined by the blocks ‘QUANTIZATION CONTROL’ and ‘MASKING 

THRESHOLDS’ which, in turn, are controlled by the block ‘PSYCH.ACOUSTIC 

MODELING’ that contains the human hearing masking properties. In fact, the main 

contribution to the compression is performed by the quantization control. The 

 
 
 
Fig. 24.8. Functional diagram of MP3 coding of one audio channel. 
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compression is partly improved by the block ‘NON UNIFORM QUANTIZATION’ which 

raises the input values to the ¾ power before quantization. This improves the signal-to-

noise ratio for small sample values. (The mechanism operates similar to the A-law 

conversion of fig. 24.4, only the non-linear part of the curve occurs mainly at sample 

values near zero.) The resulting data are distributed into suitable parts by the block 

‘DATA BUFFER’ and then further compressed by Huffman encoding. The block ‘DATA 

MODELING’ combines the encoded sound data with ‘metadata’ which defines all 

parameters that can be chosen (the amount of data reduction, the number of channels, 

the frame lengths used, etc.). 

 

One of the tricks not mentioned yet is making use of the resemblance between the two 

channels of a stereo sound. Two different systems can be selected. In the ‘MS stereo’ 

mode (Middle/Side) the sum of the two channels (the middle) is coded as one signal 

and the difference (the side) is coded as the second signal. The benefit is that often the 

samples of the side information have low values which can be quantized with less bits. 

The ‘Intensity stereo’ mode makes use of a property of the human hearing: within 

critical bands in the range higher than about 2000 Hz the perception of the stereo effect 

depends mainly on the difference between the channel intensities and less of the phase 

differences. In these parts of the stereo sound the signals of the channels are summed 

and the individual local intensities are coded only as scale factors so that the individual 

intensities of the two channels can be reconstructed during the decoding. 

 

The functional diagram of fig. 24.8 suggests the use of many separate ‘units’ that all 

perform their own signal processing. In reality, the processing is applied on the data 

stream of the PCM input and usually occurs in real time (similar to the digital filters in 

section 18). There is only a delay between input and output. So, all filtering, 

transforming, quantizing, etc. occurs at the same rate as the input sampling. No need to 

say that the required computing power of computers that process MP3 coding and 

decoding is quite high. 

 

Obviously, the subject of signal data compression is very broad and only a very small 

part is described here. If you are interested in more details then there is an almost 

unlimited number of books and papers available on this subject. 

 

One final remark seems appropriate: although the quality of the reconstruction of MP3 

compressed sound may seem quite high, it still is a lossy compression. So, when you 

want to make sound recordings for research projects (speech analysis, investigating 

perception of sounds, masking experiments, testing sound equipment, etc.), it may be 

wise to avoid sound data compression at all and use PCM with sufficient sample 

frequency and number precision (i.e. at least 44100Hz and 16 bits, respectively). After 

all, the lossy compression methods all make use of the ‘weaknesses of the human 

hearing and, possibly, the analysis outputs of decoded compressed sounds may display 

unwanted side effects. 
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25. Noise suppression 

 

In section 15 is explained that at the ‘ends’ of every electrical conductor a noise voltage 

is present, due to the random behavior of the free electrons in the conducting material. 

When a microphone converts the very small air pressure fluctuations of sound into an 

electrical signal, the achieved voltage fluctuations are also very small. After 

amplification to a sufficient level for listening, the unwanted noise is amplified too 

which may result in a poor sound quality w.r.t. the S/N (signal-to-noise) ratio. 

 

When low-intensity sounds must be recorded, the S/N ratio may become unacceptable.  

In the earlier time of analog recording systems (tapes, vinyl records, compact cassettes) 

the noise suppression of the recording medium was a big issue as, mostly, this noise 

had a higher intensity than the electronic amplifier’s noise. Now we have digital 

recording media (CD’s, DVD’s, hard disks, flash memories, etc.), the noise of the 

recording equipment can practically be ‘defined’ by the chosen accuracy of the digital 

conversion electronics, by setting the sampling frequency and number precision. The 

‘weak point’ w.r.t. noise, however, is the microphone amplifier which has to contain 

some ‘analog’ electronics. (You may have heard of the existence of ‘digital 

microphones‘, suggesting some digital way of conversion of the sound pressure 

variations into bits but, alas, the word refers to a part of the microphone electronics 

which produces the digital output, i.e. the analog to digital convertor.) No matter which 

system is invented in the future, the S/N ratio of the transducer (the microphone 

‘element’) is restricted by its thermal noise (as mentioned in section 15). 

 

Thus the ‘bottle neck’ still remaining is the microphone with (pre-) amplifier which 

means that the suppression of noise after the recording is made is still required 

sometimes. In addition, there is the need to suppress the noise of old recordings or 

recover damaged ones. 

 

Although many ingenious noise suppression systems have been developed in the sound 

processing history, there is no need to explain these any more as most of them are 

developed to improve the limited S/N ratio of the old recording media. From the 

remaining general methods to suppress noise from recorded sound, one principle has 

been already mentioned in section 16 about correlation. A drawback of that method is 

that the ratio of the spectral components of the wanted sound get changed which 

generally results in great differences with the original sounds. 

 

One of the best working noise suppression systems is the spectral subtraction method. 

This method is based on the general property of audio signals from ‘natural’ sources 

(speech, music, animal sounds, etc.): the spectra of these sounds consist of a limited 

number of narrow peaks of relatively high intensity, whereas the noise spectrum 

consists of the whole range of frequencies of much weaker intensities. So, between the 

relatively strong components of the signal, a ‘floor’ of almost all other frequencies of 

low intensity exists. Now, the idea is, from all frequency components, to subtract a 

small part of their amplitudes and to convert the modified spectrum back to sound again. 
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In practice, the spectrum of the noise will not be perfectly flat, so that the size of the 

part to be subtracted from a frequency component is determined by the corresponding 

frequency ‘bin’ of the noise spectrum. Generally, the noise spectrum can be obtained 

from the Fourier transform of a part of the sound recording where the signal is absent 

(i.e. in a pause). Of course, some noise spectral components will coincide with those of 

the signal but subtracting a small part of their amplitudes will hardly influence the 

contributions of these components to the signal. Only when the signal-to-noise (S/N) 

ratio is quite low, the distortion of the signal may become unacceptable. Nevertheless, 

the amount of noise suppression that can be obtained will often be quite satisfactory. 

You can run DEMO 25.1 which plays a spoken sentence with added background noise 

of relatively high intensity (the S/N ratio is only 6 dB), followed by the same sentence 

denoised by a simple spectral suppression algorithm. As you can hear, the S/N ratio has 

been improved substantially (about 40 dB, as you can see in the intensity contours and 

in fig. 25.1). In the following example, the initial S/N ratio is only 10 dB and the 

improvement is 38 dB. But now you can hear that the signal quality has deteriorated a 

lot. 

 
 
Fig. 25.1. Denoising a recorded sentence by Spectral Subtraction. 
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Here again, a similar warning as in the end of section 24 has been formulated, seems 

appropriate: when research experiments are involved, you should realize that using this 

spectral suppression in order to improve bad sound recordings will cause differences 

with the originals. In particular, the ratio of the intensities of voiced parts and unvoiced 

parts (i.e. consonants) of recorded speech will be changed to some extent (the noisy 

speech parts may be attenuated a bit). When the noise to be suppressed is not too high 

in intensity, the difference can be quite acceptable, however. 
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26. Musical sounds 

 

For the basic sound processing techniques described so far, the speech signal has been 

mainly used as examples because of the variety of its properties. The only limitation is 

that the speech signal is monophonic, which means that only one sound source is active 

at the same time (apart from the breezy or noisy voiced speech of the fricatives, where 

the turbulence of air acts as a second sound source besides the vocal folds). When two 

or more sound sources are active at the same time, the relation of the separate sounds 

of the sources becomes important. Therefore, a section about the basic structure of 

musical sounds is included. 

 

Of course, music can be monophonic as well, like solo singing, or playing monophonic 

instruments (like most wind instruments, one-string instruments, or the Theremin).1 But 

even monophonic music is not comparable with speech: the frequencies of the musical 

tones and their sequence are bound to specific relations. In particular, the frequency 

ratios of sequential musical tones and their rhythm are much more strictly bounded to 

rules than frequencies and durations of the sequential speech sound parts. In addition, 

the sound of a certain instrument (say, a clarinet) producing a certain tone can be very 

different from the same tone (i.e. the same fundamental frequency) from another 

instrument (say, a harpsichord) as the number and intensities of the harmonics or 

overtones are different. (Remember: overtone n is the same as harmonic n+1.) 

 

When two tones are played in succession, and the frequency of the second tone is two 

times the frequency of the first, the interval (which is one octave) sounds ‘in tune’. 

When the frequency is doubled again, the perceptual impression of the new interval is 

the same: the frequency (the pitch) sounds one octave higher. Each redoubling of the 

frequency sounds one octave higher, as the human perception of phenomena in general 

behaves in a relative way, according to Weber’s law, which was mentioned already in 

section 2. But that is only one part of the explanation. The frequency ratio of one octave 

is equal to 200 %. When the interval is much smaller, say, 1 %, the difference between 

the two tones can still be perceived very well. In fact, most people can hear frequency 

differences of about 0.1 % when the frequencies fall in the most frequency-sensitive 

range of the human hearing (2000 Hz, for example) and the variations are occurring 

within short time intervals. This frequency difference corresponds to only 

1/693 octave!2 You can run DEMO 26.1 to test your own best frequency selectivity. It 

is a rough test to estimate the just noticeable difference (JND) of frequency shifts. 

You will hear sets of two sinusoidal tones. One of the tones has a steady frequency, the 

other is frequency modulated by a sine wave of 5 Hz. The sequence of the two tones 

occurs at random. The frequency deviation (the modulation depth) is changed at 

random, in a range from hardly audible to clearly fluctuating. After each stimulus you 

can respond by selecting FIRST, SECOND, or DON’T KNOW, to indicate which of 

 
1  An electronic ‘organ’ of which its tone frequency and intensity can be varied by positioning the 

hands in the neighborhood of an ‘antenna’. 
2  The ratio at 0.1 % increase is 1.001. Raised to the power of 693 produces 1.999. 
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the tones was not steady. After 48 stimuli, the number of correct responses for each 

frequency deviation is displayed in a graph. You can select one of the frequencies 200, 

500, 1000 and 2000 Hz at the start of the test. You will discover that your selectivity is 

the poorest when you selected 200 Hz and, probably, the best when 2000 Hz was 

selected. (When interpreting the results, one must realize that the displayed frequency 

modulation percentages are only half of the total shift between maxima and minima.) 

 

Because of this generally high accuracy of frequency shift perception, the tuning of 

musical instruments and the pitch (fundamental frequency) of singing sounds has to be 

very precise. This is especially important when two or more tones sound at the same 

time: the sound is polyphonic.1 

 

As mentioned above, if the frequency ratio is 2, the interval is exactly one octave. 

Naturally, to create music, some tones must be defined within the range of one octave 

to divide it into smaller parts. If all parts are to be perceived as ‘equal’ steps, each tone 

should have a frequency increment which is a constant percentage of the preceding tone 

frequency. In other words, the frequencies must have a logarithmic relation, just like 

the octave steps of 2, 4, 8, 16, etc. which are increments of 100 %. For example, if one 

chooses to make eight steps within an octave, each tone frequency should be the 

preceding tone frequency multiplied by 2(1/8) = 1.0905, which means increments of 

about 9 %. All tone systems with logarithmic relation are called equal temperament 

(ET) systems. For monotonic music any exponential distribution of tones could be 

adapted.  

 

However, in music, the relation of the pitches of tone sequences or tones played at the 

same time (chords) is extremely important w.r.t. ‘harmony’ or consonance. The more 

the combination of tones is perceived as ‘pleasant’, or ‘agreeable’, the higher the 

consonance. For two simultaneously single sinusoids the perception of consonance as 

a function of their frequency difference can be measured, as has been done by Plomp 

and Levelt in 1965 [10]. The averaged result looks like fig. 26.1 which shows a stylized 

curve of the consonance as a function of frequency ratio. The vertical scale is arbitrary. 

The curve starts with zero difference: the consonance is maximum as there is only one 

sinusoid. When the frequency difference is increased, repeated ‘beats’ can be heard: 

one tone with varying amplitude in the rhythm of the frequency difference. When the 

frequency difference increases further, the beats occur more rapidly, until this beat 

frequency has become so high that the individual beats cannot be perceived anymore 

and the sound becomes harsh, unpleasant, rough. When the difference increases further, 

the sound becomes audible as two separate tones played together. So, the dip in the 

 
1  This high frequency selectivity of humans has nothing to do with the ‘absolute pitch’ ability which 

means that the pitch of a tone can be determined (indicated as a musical note) without any 

reference. This ability is very rare (figures as 1 in 10000 people are reported and even then, fully 

erasing the memory of earlier given tones in the tests can be very tricky) and it would mean either a 

tremendous frequency memory of hours of days, or a mechanic ‘aberration’ like a sharp resonance 

peak in the mechanics of the ear. 
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curve represents the point of maximum dissonance (the opposite of consonance). The 

position of this maximum dissonance is not solely determined by an absolute frequency 

difference (as was stated earlier by Helmholtz) but depends also on the frequency of the 

tones (although not linearly proportional to them either). The graph of fig. 26.1 is valid 

for a lower tone of 500 Hz. For higher frequencies, the consonance dip shifts to lower 

relative values. According to Plomp et al. the position of the maximum dissonance is 

not completely independent of the frequency but seems to be a function of the critical 

bandwidth at the frequencies concerned. (See section 24 for some remarks about the 

critical band concept.) 

 

Remarkable is that these curves have no local maxima at positions where the frequency 

ratios are ‘musical’ intervals like 3/2 (a ‘perfect fifth’) or 5/4 (a ‘major third’), etc., 

whereas many people would expect peaks at these ‘harmonic’ interval positions.1 This 

means that, for simultaneous sinusoidal tones, the musical frequency ratios play no part 

in the consonance curve. (Plomp and Levelt minimized the possible influence of the 

listening subjects’ musical education on the perception results.) 

 

When produced by musical instruments, however, tone intervals with ratios like 3/2, 

5/4, 4/3, etc. generally sound much more harmonious or pleasant than other ratios. So, 

this must be caused by the presence of harmonics of the tones of the musical 

instruments or voices. For example, the 2nd harmonic of a tone of 630 Hz falls very near 

the 3rd harmonic of a tone of 425 Hz and may contribute relatively much to the total 

 
1  This musical numbering for notes stems from the commonly used system of 7 ‘whole’ tones per 

octave. The terms will be explained later.  

 
 
Fig. 26.1. Consonance of two simultaneous sinusoids as function of their frequency 
difference, ref. Plomp and Levelt. The steady tone is 500 Hz. In the area ‘a’ the 
difference is heard as amplitude ‘beats’; in the area ‘b’ the sound is perceived as ‘rough’ 
or ‘harsh’; in the area ‘c’ the two components are audible as separate tones. 
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dissonance. When the 2nd tone has a frequency of 420 Hz, these harmonics coincide so 

that their contribution to the total dissonance is zero. 

 

Now, Plomp and Levelt have applied their consonance curves to generated tones with 

6 harmonics each. For each shift they added all individual dissonances (curves like 

fig.26.1 upside down) of all combinations of harmonics. Now the resulting dissonance 

curve showed dips at 6/5, 5/4, 4/3, 3/2, 5/3 and 2/1 times the frequency of the lower 

tone, in other words, peaks at these positions in the consonance curve! In his 

publication, William A. Sethares [12] included a program to produce the dissonance 

curve from a selectable number of harmonics and specified amplitudes of the individual 

harmonics, based on the consonance curves of Plomp and Levelt. Applying his program 

to an example of a ‘musical instrument tone’ with the number of harmonics set to 7 and 

gradual decaying amplitudes with a factor 0.8, leads to fig. 26.2 which displays the 

resulting dissonance curve. The curve exposes 9 dips, i.e. 9 tone frequencies at relative 

low dissonant positions. Although the position of the dip in fig. 26.1 depends on the 

frequency, the dissonance dips in fig. 26.2 remain in position as they are the exact 

coincidences of harmonics frequencies.1 

 

The choice of 7 harmonics for the test signal is not very critical; this number is lower 

than the number of harmonics of most music instruments but the intensities of the 

 
1  When the tones are produced by two independent instruments, there is no fixed phase relation as in 

case of the fundamental and the second harmonic of a tone of one instrument. Only when the ratios 

remain perfectly constant, the phase difference is constant, and no ‘beats’ can be heard, which is 

never strictly true in practice. This ‘imperfection’ when the same note is sung by a group of people 

is known as ‘choir effect’. 

 

 
 
Fig. 26.2. Dissonance of two simultaneous tones with 7 harmonics each, as function of 
their fundamental frequency difference, calculated from the application of the 
consonance curve of fig. 26.1 to al harmonics combinations. Based on algorithm from 
W.A Sethares. The positions of an 8-tone ET example are marked at the top. 
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higher harmonics of almost all acoustic music instruments decay rapidly and can be 

ignored for this subject. 

 

When the positions of the 8-tone division of the octave of the example mentioned before 

are marked in the dissonance curve of fig. 26.2, we can see that many tones of this ET8 

tuning system fall at unfavorable positions. Then, why not choose the exact positions 

of the dips of fig. 26.2 for the tones within the octave?  There are two reasons why this 

would work out not very well.  

 

The first one is that the perceptual ‘distance’ of the frequency steps of these tones is far 

from constant. Although there may be no serious objections against a slight unevenness 

of the logarithmic frequency steps, the difference, for example, between the first step 

(7/6 = 17 % step) and the next one ((6/5)/(7/6) = 2.9 % step) is rather unacceptable. 

Even when the 3rd position is excluded, the step percentages vary from 4.2 % to 17 % 

which is still very unsatisfying. In addition, the construction of some acoustical music 

instruments becomes more complicated. 

 

The second reason is of general nature: when a musical piece is played, the base tone 

(the key) must be at the position ‘1’ in this system. In other words: the music instrument, 

adapted to this tuning system cannot be played at a different key (i.e. transposed) 

because any other selection than ‘1’ will cause different steps or frequency ratios so 

that the musical melody alters a lot and, what’s more, will sound awfully ‘out of tune’ 

as all chords will be ‘assembled’ with different steps and become completely different 

in character. The only real solution to this problem is a pure logarithmic distribution of 

tones within the octave: the equal temperament tone systems as mentioned above. 

These are the only systems where the music can be played in any key. 

 

 
 
Fig. 26.3. ET12 tones (top) and major scale tones (bottom) placed in dissonance curve. 
The 7 major scale tones form a more consonant subset of the 12 ET tones. 
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So, as consonance is concerned, the ET tones should be as near as possible to the dips 

in fig. 26.2. When the positions of the tones of a 12-tone equal temperament system 

(which is the modern Western ‘standard’ tuning system) are marked in the curve of 

fig. 26.2, as is done in fig. 26.3, we can see that some of these tones fall at positions 

quite near the minimum dissonance points, in particular the ‘important’ ratios 3/2 and 

4/3. In this respect, the 12-tone ET system is a much better choice than the 8-tone 

example mentioned above. It is possible to calculate the mean consonance per tone for 

some ET systems with different numbers of tones in the octave, using the dissonance 

function of fig. 26.2. After calculating this mean for the systems ET6 to ET15, it turns 

out that the ET12 system has the highest mean consonance (although the differences 

are small). So, it is not very surprising that the 12-tone equal temperament tuning has 

become a world standard, in spite of the many alternative tone systems which emerged 

in the history of the different cultures.  

 

Pythagoras discovered already the importance of the most consonant ratio within the 

octave: 3/2 (the ‘perfect fifth’, in musical terms). He calculated the frequency ratios of 

repetitive increments of one perfect fifth, which means multiplication by 3/2 for each 

next tone. After the 12th step, the tone is practically the same again, only 7 octaves 

higher: 

 (
3

2
)
12

= 129.75 ≅ ⁡27 (26.1) 

In this way, each multiplication results in a different relative position within next 

octaves. See fig. 26.4 for a visual explanation. The numbers of the face of a clock serves 

as markers within the octave, 

with the ‘12’ as the base tone. 

When the steps are 

dimensioned as perceptually 

equal, each step would be the 

multiplication of the latest one 

with 2(1/12) = 1.059, i.e. the 

ET12 system. Then a ‘fifth’ 

falls at the ‘7’ because 

2(7/12) is about 3/2. the next 

increment with a ‘fifth’ falls 

about the ‘2’ in the next 

octave. The next positions on 

the face, after ‘scaling down’ 

to the same octave, are: 9, 4, 

11, 6, 1, 8, 3, 10, 5, 12, 7. This 

famous circle of fifths is the 

basis of the Pythagorean 

temperament. The small 

inequality of formula 26.1 is called the “comma of Pythagoras”, which is only 1.36 % 

in the 7th octave (or 0.113 % of the 3/2 ratio itself). Instead of percentages, in music 

 
 

Fig. 26.4. Construction of Pythagoras’ circle of fifths. 
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subjects it is customary to divide each semitone of the octave into 100 parts, called 

cents, which divides the octave logarithmically into 1200 parts. So, this Pythagorean 

deviation of 0.113 % corresponds with 1.96 cents (1200 * log2(1.00113 ≈ 1.96). 

 

Because of this deviation, the range of this repetitive Pythagorean tuning was limited 

to one octave (with the 7th step as the center of the 12-tone range): the 12-tone 

Pythagorean tuning. The correspondingly ranked tones of the higher octaves were 

simply multiplications by powers of 2 and the tones of the lower octaves divisions by 

powers of 2. In the much later applied ‘extended Pythagorean tuning’ this limitation 

was cancelled by correction of this comma and the result is exactly the same as the 12 

tone Equal Temperament, which was developed as late as 1584!  

 

In the Western 12-tone music tuning system the tone increment is called a half tone or 

semitone which implies that there must exist whole tones as well. These whole tones 

form a subset of the 12 half tones. In music notation (where the ‘C’ is the base note) 

the whole note range is notated as: C, D, E, F, G, A and B: the major scale, mostly 

learnt in childhood as “do re mi fa sol la ti do”. See the white circles in fig. 26.5 for the 

names of these major scale notes according to the commonly used musical notation. 

When the positions of these whole tones are placed in the dissonance curve, as has been 

done in fig. 26.3, we can see that their positions approximate the ‘ideal’ ones better than 

the total range of all ET12 tones. In fact, these half tones were often omitted in early 

music, probably due to their lower consonance. In musical notation, therefore, these 

‘tones in between’ were represented as whole notes with symbols added for 

modifications: the sharps and flats (# and b) for half tones higher and half tones lower, 

respectively. Consequently, a ‘C#’ is the same note as the ‘Db’, the ‘Eb’ is the ‘D#’, 

the ‘F#’ is the ‘Gb’, etc. (This 

is only true for the ET12 

system: originally, there were 

small differences, depending 

on the key in which the music 

piece was written.) Fig. 26.5 

displays the musical names  

of the places of all 12 tones in 

the octave. You can see that 

the interval naming of the 7-

tone major scale omits the 

‘0’: it starts with ‘1’ for the 

base and goes on to ‘1’ again 

for the octave (which is also 

indicated as ‘8’). The 

commonly used historical 

originated musical notation 

system with these sharps and 

flats, together with the use of 

5-line bars to accommodate a 

 
Fig. 26.5. Naming of musical notes. The major and 
perfect notes form the 7 notes of the major scale: the 
white keys on the piano when the base (1) is the C. The 
minor and diminished notes then are the black keys. 
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subset of only 7 unequal ‘whole tone’ distances, seems very inadequate for a tone 

system with 12 half notes in the octave. Nevertheless, this notation is used all over the 

world and educated musicians are able to read it at an amazing speed.  

 

Although being a relatively consonant system, the ET12 contains a lot of compromises, 

as you can see in figs. 26.2 and 26.3. Even the ‘important’ interval of 3/2 (the perfect 

fifth) is not exact (the deviation is 0.133 % as mentioned above). When playing cords, 

which consist of 3 or more tones played simultaneously, these remaining dissonances 

of the ET12 system can become annoying. Therefore, a lot of alternative tuning systems 

have been designed in the music history. Of course, any system that is not an ET (equal 

tempered) system has the problems as described above (the uneven tone distances and 

the impossibility to transpose). Many musical instruments, however, are able to produce 

any pitch in their total range, not limited to the discrete steps of the ET12 or other tuning 

system. For example, with violins, cellos, and trombones (and the singing voice!) any 

tone within the octave can be produced so that many of the played intervals can be 

exactly matched with the consonant positions in the octave. Even the fixed tones of 

some instruments can be varied a small amount by adjusting the manner of blowing or 

pushing aside the strings. (Naturally, with this type of instruments or the voice, it is 

possible to produce tones with vibrato: a frequency modulation like you could have 

heard in the DEMO 26.1. This effect may also be ‘misused’ to mask the disability to 

produce perfectly tuned tones.)  

 

A description of the numerous alternative tuning systems falls beyond the purpose of 

this book, only the just tuning is mentioned here because it is a tuning system which 

applies frequency ratios with simple whole numbers like 4/3, 5/4, 3/2 and so on, which 

are the most consonant ratios. Nevertheless, this just tuning also suffers from dissonants 

 
 
Fig. 26.6. Harmonics of 4th semitone of octave (red lines) mapped on logarithmic 
frequency scale with marked ET tones (top) and just tuned tones (bottom). Generally, 
the higher the harmonic, the less it fits with the tone system, which applies for all tones. 
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formed by harmonics and tones in other octaves, as shown in fig. 26.6, where the 

positions of harmonics of a tone can fall outside the tone positions in the higher octaves. 

The figure compares the ET12 system with the just tuning system for the 4th semitone 

(the major 3rd) as an example. Although the fit of the just tuning and the harmonics in 

the higher octaves in this example seems poorer than that of the ET, the opposite will 

be true for some other semitones in the octave. The mean dissonance for all tones is 

somewhat lower for just tuning than for ET. As you can see, there must be always 

harmonic frequencies which fall somewhere between the nominal tuning tones and thus 

will cause dissonances. Obviously, this is true for all tuning systems as a linear series 

(the harmonics) will never fit to a logarithmic series (the frequency perception). 

Naturally, when a musical instrument produces many and strong overtones (e.g. the 

harpsichord), the probability of dissonances to occur when chords are played is much 

higher than when the overtone amplitudes at higher frequencies weaken out very fast 

(e.g. in case of the oboe). 

 

A great number of music instrument types have basic sound sources of which, globally, 

the harmonics weaken in intensity as their frequencies increase, e.g. strings and ‘reeds’. 

The resonance box or sound board or other resonating part of the instrument amplifies 

certain harmonics and attenuates others, in analogy with the human voice: the vocal 

tract filters the harmonics of the source: the vibration of the vocal folds, see section 19. 

Usually, the ‘peaks’ of the filter function encompass several spectral lines (harmonics), 

as is the case with pianos, violins, cellos, acoustic guitars, harps, etc. The timbre (i.e. 

the total envelope formed by the spectral lines) is characteristic for each instrument. 

The analogy with the human voice applies very well for these instruments, although the 

spectral maxima (or formants) of these instruments generally cannot be varied while 

the vocal tract spectral peaks can be varied in a great range. 

 

Other types of instruments function differently: usually, the resonant part together with 

the source functions as a kind of oscillator by feedback of the resonating part to the 

source (most wind instruments). Here, the dimensions of the resonant part determine 

the exact frequency of the tone produced (i.e. an organ pipe, of which its resonance 

principle is mentioned in the subject of the vocal tract in section 19). To generate 

different tones, either the effective pipe length is altered (flutes, trombones, clarinets, 

etc.), or there are separate pipes for each tone (pipe organ, pan flute). Thus, these 

instruments work not at all like the human voice and the dimensions are crucial for the 

tuning, while these are not for instruments of the former category. 

 

Occasionally, however, a filter ‘peak’ of the resonance box of a violin or cello can be 

quite narrow so that the energy at the resonance frequency can be relatively high when 

the fundamental or a higher harmonic of the source comes in the neighborhood of the 

resonance frequency. Due to the acoustic coupling of the string and the resonance box 

(a Helmholtz resonator) there is some mutual influence between the oscillations of the 

string and those of the resonance box. A small difference between their frequencies 

may result in strong ‘beats’: the sound can be almost zero in the minima. When the 

repeated beats occur in a particular rate, the result does people think about the howling 
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of a wolf: the wolf tones. (Similar small differences of tones and harmonics in tuning 

systems as mentioned above are sometimes called ‘wolf intervals’.) There are some 

methods to avoid these wolf tones, which could easily occur even to high quality 

instruments, mainly based on damping the string energy at these wolf frequencies. 

 

As you may know from section 19 about tubes which are open at one end (almost all 

pipe instruments), is that the resonances occur at odd multiples of ¼ wavelengths which 

means that only odd-numbered harmonics emerge. To create tones with different 

characters with the pipe organ, more pipes are ‘switched on’ which are tuned to higher 

harmonics to assemble a certain spectral envelope. In this way, the ‘timbre’ of the sound 

can be greatly altered. This principle of “Fourier synthesis” is also applied in Hammond 

organs and, of course, electronic synthesizers. 
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27. Miscellaneous practical subjects 

27.1. Praat's Spectrum 

 

As mentioned already in section 15 about noise, the number of different spectral 

components is infinite, theoretically. For a component to have any sense, it must have 

some magnitude. Because the power of the signal cannot be infinitely high, the 

components are not regarded as individual sinusoidal waves but seen as spectral 

density values, defined in Pa/Hz or dB/Hz units. Obviously, the same applies to 

continuous spectra. This is the reason that Praat’s spectra (and those of some other 

sound analysis programs) are density spectra.1 

 

This implies that, in case of pure sinusoids in a sound, the magnitudes of the spectral 

components depend on the time length of the sound. This may seem counter-intuitive: 

when the sound contains a sinusoidal wave of, say, an amplitude of 1Pa, you may 

expect a spectral component with a magnitude of 1 Pa (or 91 dB on a log scale, see 

section 22.2 about intensity). However, this expectation assumes that the components 

are independent of the length of the sound, in other words, mean values. Recalling the 

computation of the Fourier components as presented in section 6, the components are 

cross-correlation factors of the sound with a cosine and a sine of 1 Pa amplitude. 

When the means of the results are computed, the spectrum is an amplitude spectrum. 

When the total sum or integral is taken (which obviously is the mean multiplied with 

the duration, see the box SIGNAL COMPARISON in section 6), the spectrum is a density 

spectrum. So, only when the sound duration is 1 s, the spectral density magnitude is 

equal to the amplitude. Otherwise the spectral values of the cosine and sine 

components should be divided by the duration in seconds to convert the density 

spectrum to an equivalent amplitude spectrum. (As you may know from section 5 the 

combined amplitude is equal to the square root of the sum of the squares of the cosine 

and sine amplitudes.) 

 

Why so many words about such a simple matter? As a conclusion, the display of a 

spectrum of a sine wave with an amplitude of 1/2 Pa and a duration of 1 second 

should be equal to a spectrum of a sine wave with an amplitude of 1 Pa and a duration 

of 1/2 second, as their densities are the same, right? Alas! It is not true. See fig. 27.1.1 

for an example with a sinusoidal wave with a whole number of periods in both cases 

so that there exists only one spectral component. Although the densities are the same, 

the difference between the two displayed spectrum values is 3 dB! The cause of this is 

that the dB values refer to power, as already explained in section 2. They do not 

represent power but refer to the power which is generated as a result of the amplitude. 

 
1  In the display the discrete spectral values of the bins are connected with straight line segments and 

no ‘spectral lines’ to the horizontal axis are drawn, resulting in a continuous curve. 
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Consequently, for the spectral density the amplitude part is valued differently from 

that of the time part. So, the factor 2 increase of the amplitude part means 6 dB and 

the factor 2 decrease of the time part means -3 dB (which is -10*log(2). The result is 

an increase of 3 dB. The spectral magnitudes of a density spectrum in dBs are 

proportional to the duration of the time signal but also proportional to the square of 

the component amplitudes.  

 

This is a consequence of the convention to express amplitudes (or SPL’s) in power 

dB’s. It was adopted by telephone engineers in earlier days and everybody is 

accustomed to this habit. In my opinion, seen from a fundamentally viewpoint, this 

was not a very good idea. I would prefer pure logarithmic values of ratios of 

amplitude, SPL, velocity, etc., independent of possible effects in other areas (power, 

energy). This preference may be understood a bit from this description about the 

spectral density concept. Anyway, there is no choice: we have to use the spectral 

representation in power dBs for adaption to the rest of the world. 

 

So, if you want to derive the amplitude spectrum from the display of the density 

spectrum in Praat, the number of dBs to subtract is equal to 10*log(duration).)  

 
 
Fig. 27.1.1. Top: waveform parts with integer number of periods. Center: spectral 
densities are equal. Bottom: display of spectra in dB’s differ 3 dB. 
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Then the linear value is 10^(dBnum/20)*20 µPa as explained in section 2. This linear 

value is the rms (root mean square) value, as the reference of 20 µPa is also defined 

as its rms value. To get the amplitude, the linear value must be multiplied by √2 as 

already explained in section 5. To put it all in one formula we get after some 

manipulations: 

 𝐴 = 2 ∙ √
2

𝑇
⁡ ∙ ⁡10(

#𝑑𝐵

20
−5)

 (27.1.1) 

where A is the amplitude of the spectral component, T the signal duration in s, and 

#dB the value to read from Praat’s spectrum display. 

 

In Praat, the underlying spectral data are contained in the Spectrum object, listed in 

the window “Praat objects”. The Spectrum object values are complex (see 

appendix II.3 for the complex representation of Fourier components) which means 

that it comprises the phase information. The Spectrum object consists of a matrix with 

two rows and columns for each frequency bin. Basically, the first row contains the 

cross-correlation factors of the signal with cosines of amplitude 1 and the second row 

the cc factors with sines of amplitude 1. (Because of the conventions when dealing 

with complex representations, the numbers in the sines row are opposite in sign. 

Therefore, fig. 11.5 in section 11 can only represent the Praat Spectrum object when 

the red graphs are inverted.) 

 

The spectral magnitude which emerges when the component frequency equals the 

signal frequency is not equal to but half the amplitude of the component in the signal. 

This stems from the fact that for the cc factors the time functions are multiplied, and 

multiplication of two sine waves with the same frequency and phase will produce a 

sine wave (with the frequency doubled) with amplitude ½ A1A2 where A1 and A2 are 

the individual amplitudes. One of them (the component with which the time signal is 

cross-correlated) is always 1 which causes the result always to be half the ‘real’ 

spectral value of the signal. A reverse Fourier transform by reconstruction of the 

signal from the frequency components should render the same amplitudes as in the 

original so that the cc components should be multiplied by 2. Thus, multiplication of 

both the cosine and sine components by 2 doubles the magnitude and would 

reconstruct the original signal exactly when all were summed. In Praat, this scaling is 

not done for the Spectrum object (as it is complex, containing also negative 

frequencies, see appendix II.3) but the calculation of the dB’s in the display 

compensates for this. 

 

As mentioned in part A, the spectrum in Praat can be produced either by using the 

DFT (Discrete Fourier Transform) or the FFT (Fast Fourier Transform). The DFT is 

the ‘standard’ Fourier transform as mentioned in section 6 and all spectral properties 

described so far are valid for the DFT. For the FFT, which performs much faster when 

the sounds durations are longer than some tens of seconds or so, it is required that the 

sound to transform consists of a number of samples that is a whole power of 2. 

Because, in general, this is not the case, some samples should be added before the 
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start or after the end of the sound. (Selection of a part of the sound such that the 

contained number of samples is a power of 2 would also do but is seldom used for 

reasons of selection flexibility. For sounds of which their parameters remain quite 

constant so that the length of the selection is not critical, however, this procedure 

would offer some advantages, as may become clear from the following.) Because 

there is no data to fill-in, zero value samples are added (zero padding). 

 

A disadvantage of the zero padding to accommodate the FFT is that the consequences 

for the spectrum can be serious: when a 500 Hz sine sound, for example, has a 

duration of 0.5 s, the DFT shows a perfect single point (which you would expect 

because of the number of periods being a whole number), whereas the FFT shows 

strong side lobes over a very wide area, the nearest only about 15 dB or so lower than 

the center, see fig. 27.1.2. The same occurs at all currently used nominal sample 

frequencies. It will be no surprise after reading section 13 about windows and time-

insertion: the addition of time causes to emerge spectral ‘samples’ from the 

underlying sinc spectrum of the rectangular ‘window’ with length 0.5 s. Of course, 

this is a theoretical example: a ‘clean’ DFT spectrum occurs only when an integer 

number of exactly the same periods is selected. In practice this is highly improbable. 

So, windowing the sound prior to the transform should be the ‘standard’ procedure1 

and for FFT it is absolutely necessary. 

 

 
1  The main reason to window the signal in advance, as mentioned in section 17 about sampling, is 

that windowing greatly suppresses the spectral leakage that occurs when the time interval is not 

equal to an integer number of signal periods, which in general is the case. 

 
 
Fig. 27.1.2. Bottom: zoomed-in part of spectra of an integer number of periods of a 
sine wave of 500 Hz. Left: DFT. Right: FFT. Top: the corresponding waveforms of the 
reverse Fourier transforms. 
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However, even if signals are windowed before taking the FFT, the zero padding can 

still ‘distort’ the spectrum severely as the next example shows in fig. 27.1.3. In the 

left column the time function is 0.64 seconds of a sine wave of 200 Hz, sampled at 

44100 Hz. The sound is windowed by a Hann window, which has a moderate side 

lobe suppression. The ‘zoomed-in’ spectrum part 100…300 Hz shows the zero-

padding effect.  

 

Even when the number of signal periods is not an integer, as displayed in the right 

column, the spectral distortion of the DFT is more acceptable than that of the FFT 

spectrum. (Although this is not always the case for several other types of windows 

with moderate side lobe suppression.) Of course, when a better window is used, like 

the ‘Gaussian2’ in Praat, the DFT and FFT spectra are practically the same. 

 

An additional disadvantage of the FFT spectrum with zero padding is that, in general, 

the inverse FFT produces back a sound longer than the original, which usually is not 

desired. (See the example in fig. 27.1.2.) In practice, the amount of added time is 

unknown: it can vary from 0 (pure luck!) to the length of the signal minus one sample 

time.  

 
 
Fig. 27.1.3. DFT (center) and FFT (bottom) of a Hann-windowed sine wave of 
200 Hz. Left: integer number of periods; Right: not an integer number of periods. 
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Finally, the time insertion of the FFT causes a level inaccuracy. Because the spectral 

density is inverse proportional to the duration of the time signal, which can vary from 

the original T to almost 2T, the difference between the spectral dB’s due to the 

varying amount of added time runs from 0 to -3 dB. See fig. 27.1.4 for an example of 

these two extrema which occur when the number of samples crosses a power-of-two 

boundary. (Sine of 200Hz, sampled with 44.1kHz, Gaussian2-windowed). As a 

consequence, the relation between dB’s in the density spectrum and the linear 

amplitudes according to formula 27.1.1 is only valid for the DFT and not exactly for 

the FFT. (Although it is possible to correct the dB values automatically, this is not 

applied in Praat.) 

The FFT was developed in earlier times when the huge number of multiplications in 

the computer for performing a DFT took a lot of time. Now you should better avoid 

the FFT for all the reasons mentioned above, as the speed of the modern pc's is 

sufficiently high for fast computation of "short time" spectra.  

 

It may be clear now that the selection of the time interval duration so that the 

remaining number is a power of 2 instead of inserting zeros, as mentioned above, 

would eliminate all disadvantages of the zero padding. Naturally, this can only be 

applied when the spectral properties to detect are all contained in the selected piece of 

signal, and when there are no other restrictions about time selection (as, for example, 

selection of an integer number of signal F0 periods). In addition, the exact time 

intervals to select should then always be calculated from the sampling frequency.  

 

 
 
Fig. 27.1.4. When the number of samples exceeds the boundary of 2^n the time 
insertion of the FFT jumps from 0 to almost the length of the time interval: here the 
number of samples increases from 32768 (left) to 32769 (right). The spectral value 
drops almost 3 dB. 

0

743.039 ms

0

743.061 ms

0 200 400
30

77.6

90

dB

Frequency (Hz)

0 200 400
30

74.8

90

dB

Frequency (Hz)



199 

 

Finally, to bear in mind the calibration remark in section 3 about the SPL (sound 

pressure level) in Praat: although the dB axis suggests a calibration of SPL with 0 dB 

referencing to the hearing threshold, there exists no calibration because the spectral 

values are derived from the sound, which is not calibrated in the first place (which is 

also explained in the Praat manual). 
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27.2. Frequency range 

 

From section 17 about sampling we know that, in practice, the sampling frequency 

should be somewhat higher than twice the highest frequency that has to be processed. 

As, in many cases, the number of bits to represent the signal digitally has to be limited 

due to quality restrictions of the equipment or speed of transport via networks, the 

question arises: what frequency range is adequately? And how is it defined? Because 

there are no abrupt boundaries of frequency ranges of microphones, filters, amplifiers, 

etc., the frequency range is usually specified within an amplitude variation of +3 dB 

and –3 dB. 

 

About the desired frequency range of audio equipment, a lot has been said and 

written. Especially, the ‘audio purists’ sometimes claim that a maximum frequency 

like 25 kHz or even more is ‘absolutely necessary’, although only young children 

sometimes have an upper hearing threshold of 18 or 20 kHz. The majority of people 

have a much lower frequency threshold like, say, 12 or 15 kHz. Nevertheless, the 

‘high end’ sector of audio equipment often boasts about specifications of 96 kHz 

sampling frequencies. Apart from the idiocy of this (we are no dolphins or bats to 

perceive a range like 45 kHz or so), the 48 kHz or 44.1 kHz sampling applied in most 

equipment offers a sufficiently high upper boundary frequency which is well above 

the range of the human hearing. 

 

Besides, a very high frequency range means a greater chance that a sensitive input of 

a (pre)amplifier picks up some high frequency harmonics from switching power 

supplies: present in many types of electronic devices, or light dimming units. The 

result can often be heard as disturbing humming or cracking noises, especially when 

the input leads of the audio equipment are poorly shielded.1 

 

In addition, the range of most microphones, the transducers of nearly all sounds to 

electrical voltages, is also limited to about 20 kHz as well and most high-quality 

microphone pre-amplifiers (built-in as part of the devices or as a separate unit) have a 

low-pass filter to avoid very high frequency components to reach the rest of the audio 

electronics chain. Finally, the transducers which transform the voltages back to sound 

again, the loudspeakers or headphones, all have their own limits concerning the 

frequency range which rarely go beyond 20 kHz. 

 

As for the low frequency boundary, a similar exaggeration can be found among audio 

 
1  In every electric conductor (wire) many very weak voltages can emerge by the ‘antenna’ effect or 

capacitive coupling with the leads of the electricity net. This effect depends on the frequencies: the 

higher the frequency, the stronger these ‘spurious’ voltages. Shielding means embedding the 

sensitive leads in a metal enclosure which is connected to a constant zero level in the device which 

works similar to the Faraday cage. It is an effective way to suppress the spurious voltages. 
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purists. Technically, it would be possible to set the lower threshold at 0 Hz when 

precautions are made in the (analog) electronics to stabilize the DC component (the 

zero level). For normal audio processing, however, it makes no sense to process 

frequencies lower than about 20 Hz as this is the normalized lower threshold of humans. 

When very low frequencies could be produced at all (by special types of loudspeakers 

only) these components, with sufficient intensity, could only be perceived as some 

vibration of your belly or fluttering of the legs of your pants. Also, musical instruments 

have fundamental frequencies seldom lower than 32 Hz.1 

 

But, why limit the frequency range at the low end? If it is technically no problem to 

design amplifiers and microphones which function from 0 Hz on, why not make it a 

standard feature? There are several reasons not to do that: 

 

1. All electronic amplifiers produce a small DC level at the output, even when 

the input signal is zero (the zero offset). The audio chain as a whole consists of a 

cascading of a number of amplifying units (stages) which means that in case of a range 

from 0 Hz, the small DC error voltage at the input stage can be amplified substantially. 

The result is that a certain ‘DC error’ at the output cannot be avoided and, obviously, it 

limits the dynamic amplitude range. When outputs like this are coupled with an input 

of, for example, a power amplifier with loudspeakers, the DC error causes the speaker 

cone to shift a certain distance from its neutral position. Because of this asymmetry, the 

maximum power which can be produced in the air will also be limited. So, blocking 

this DC component is often applied to minimize and stabilize the levels of the audio 

devices at zero input. (In the program Praat, the DC error level at the input of the sound 

card or sound unit of the computer can be eliminated very simple by choosing the 

option: "Subtract mean" which, as it says, computes the mean of the whole signal and 

subtracts this value from all sample values. This is always advisable to do prior to any 

signal analysis procedure as some DC level can disturb measurements as intensity, 

power, rms, etc.) 

 

2. The human hearing sensitivity to very low frequencies is quite low compared 

to the midrange around, say, 1000 Hz. Microphone recordings might contain high 

intensities of these low frequency components while, when listening to the recorded 

sound, these are not audible at all. For example, thumping sounds from footsteps on 

wooden floors can be so strong that the ‘zero line’ in the waveform ‘jumps’ from zero 

up and down over large parts of the complete amplitude range. Even when recordings 

are carried out in a special ‘sound proof’ booth, these very low frequency noises are 

almost as strong as outside the booth because the sound isolation of the booth cannot 

be made very effective for these frequencies. When analyzing these sounds, the 

undesired influence of this ‘zero line’ movements on the analysis outputs can be 

 
1  Low fundamental frequencies can still be perceived while the electronic equipment (i.e. the 

loudspeakers or phones) cannot produce them. This is caused by the presence of harmonics. The 

repetition rate of the F0 period does not mean that the F0 component itself needs to be present (the 

term missing fundamental is sometimes used). This was mentioned also in section 4 about Fourier 

series.  
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substantial. You can run DEMO 27.2 for an example of a waveform of a recording of 

a music segment with this kind of low frequency noise (see also fig. 27.2.1). The 

thumping noise is hardly audible. The actual acoustical intensity of the thump must 

have been even higher because of the attenuation of these low frequencies by the 

microphone and the processing audio equipment used. The amount of shift of the ‘zero 

line’ can sometimes even be so great that the amplitude peaks of the wanted signal are 

limited to the maximum possible amplitude of the audio device (‘clipped’). Another 

example: the popping noises that emerge when one is speaking too close to the 

microphone can be so strong that the wanted sound is ‘pushed away’ completely. The 

next section described the effects of this clipping more detailed. Obviously, the very 

low frequencies should be attenuated sufficiently in the first stage of the microphone 

amplifier to prevent distortion in the next stages. In practice, however, this is often not 

done, as you may have experienced sometimes when the voice of someone addressing 

an audience in a room is amplified by the public-address system used. 

 

3. Low frequency components of machine noise, like air conditioning or fan 

noise, are often not heard, even while they can be relatively strong compared with 

speech or music sounds intensities, because people are accustomed to these constant 

intensity sounds in such a way that they are not aware of them anymore. Afterwards, 

when listening to the recording, this noise is noticed and can be very annoying. This 

noise does not disturb the ‘zero line’ substantially but the quality of the recordings 

might be too poor for analysis or presentation. 

 

In this light it seems wise to suggest sound signal researchers to attenuate the very low 

frequencies during the recording of the sound material. If that is not possible (any more) 

then they should have their recorded sounds high-pass filtered, prior to whatever 

analysis is to be carried out. A cross-over frequency of, say, 80 Hz would be a practical 

value, for speech but also for music. The order of the high-pass filter should be at least 

 
 
Fig. 27.2.1. A few seconds of a music recording which contains a low frequency 
‘thump’ sound. The noise is not audible, despite its high amplitude (run DEMO 27.2). 
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two, otherwise the attenuation of the noise components could be insufficient. An order 

higher than 8 or so, should be avoided because of the long impulse response of these 

filters. Many researchers hate the idea of attenuating some frequency areas but maybe 

they should not. A well-known fact is that the intelligibility of speech, especially when 

the listening conditions are poor, improves when the low frequencies are attenuated. 

The influence on the results of the commonly applied analysis types is negligible. But, 

it’s hard to fight conventions... 
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27.3. Signal clipping 

 

The audio signal that is input to an audio device, like an amplifier or audio recorder, 

must be suitable to its input requirements. In the list of specifications of these devices, 

the input sensitivity can be found which defines the minimum input voltage to reach the 

maximum output of the device (in cases of a power amplifier) or to reach the maximum 

recording level (in case of a recorder or a computer). Larger input voltages can be 

attenuated by the input volume control of the signal receiving device so that the 

amplitude peaks of the signal will not be limited (clipped) by the receiving device to its 

absolute maximum level. Usually, however, there is a limitation to the maximum input 

level as well, even when the input volume can be adjusted to attenuate the signal such 

that the output level remains below its maximum. The reason is that this clipping of the 

signal can occur in the electronics stage(s) before the signal reaches the volume control 

electronics. The signal peaks are cut-off abruptly: the input is overloaded. 

Unfortunately, the maximum input voltage is almost never mentioned in specifications 

of audio equipment. Therefore, people may painstakingly adjust the recording level of 

an already clipped signal.1  

To demonstrate the effect of clipping on the signal properties, see fig. 27.3.1 for an 

example. The left column shows the first 25 ms of a one second damped sine of 800 Hz 

and its spectrum. The right column displays the same, except for a slight flattening of 

the first peak of the time function. This minor modification of the time function still 

 
1  Audio equipment should be designed in such a way that the input signal can be volume-controlled 

before it passes any active circuitry (amplifying stages). So, do not count on the digital push button 

volume controls or software controls in this respect! 

 
 
Fig. 27.3.1. Left column: undistorted damped sine and its spectrum. Right column: 
clipping only a small part of the first amplitude peak in the time signal causes great 
differences in its spectrum. 
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produces a very different spectrum, as you can see. Especially for speech analysis such 

as formant measurements, signal clipping can corrupt the analyses severely as shown 

in fig. 27.3.2. Here the sound is an artificial ‘vowel’ with only two formants. The 

clipping even being rather weak, the spectral result shows lots of ‘formants’. 

 

Additionally, clipping of signals cannot be corrected afterwards: there is no way to 

reconstruct the waveform above the clipping level. (Theoretically, in the examples 

given, the waveforms could be reconstructed from the knowledge that the signal 

contains only one or two damped sines with known frequencies; in practice, however, 

the waveform is the result of a vast and unknown number of frequency components 

with unknown frequency, amplitude and phase so that the cut-off parts are highly 

unpredictable.) There exist some methods to process the clipped signal in such a way 

that the undesired spectral effects will be suppressed somewhat (based on limitation of 

the intensity of its first derivative) but the results are mainly unsatisfying. 

 

So, avoiding clipping is of paramount importance. How to avoid it? There are several 

positions in the audio chain where the signal volume could be too high, causing it to 

become clipped in the following electronics. See fig. 27.3.3 for a functional diagram of 

a typical audio chain. The maximum interconnection signal level of sound equipment 

like players, recorders, radio tuners, etc. has been standardized to line level so that all 

outputs of devices can be coupled to inputs of other devices. Originated in the telephone 

technology, this line level was defined as 1 mW (milliwatt) power into a 600 ohm ‘line 

impedance’, which corresponds with a rms voltage of 774.6 mV (millivolt) across the 

line. On the dB scale, this reference is indicated as 0 dBm. Although this 600-ohm line 

impedance does not apply to the audio interconnections, this voltage is maintained as 

 
 
Fig. 27.3.2. Left column: artificial vowel sound with two ‘formants’ and its spectrum. 
Right column: clipping a small part of the amplitude peaks in the time signal causes 
many ‘false formants’ in its spectrum. 
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the normalized level, and expressed on the dB scale as 0 dBu, where the ‘u’ stems from 

‘unloaded’, i.e. not loaded with 600 ohms or any other resistance. (Also, dBv is used.) 

Unfortunately, this level standard is not unique. The dBV, for example, refers to a 0 dB 

value of 1 volt rms. Things are complicated further because the ‘professional’ audio 

equipment uses a line level of 4 dBu (of which 0 dB refers to 774.6 mV), representing 

1.228 V, and the ‘consumer’ audio uses -10 dBV (of which 0 dB refers to 1 V), 

representing 316 mV. All voltages are rms. Devices which cannot meet the line level 

standard are microphones, loudspeakers and headphones. The signal from the 

microphone is mostly less than 20 mV so that a pre-amplifier is needed to raise the mic 

output to line level. The loudspeakers and headphones need power, which means that 

they require current, whereas the line outputs cannot produce currents of these sizes. A 

standard line output cannot ‘drive’ loudspeakers or headphones. Therefore, speakers 

and headphones need special ‘power amplifiers’.  

 

With reference to fig. 27.3.3 we can now sum-up the sequential positions in one channel 

of the audio chain for possible signal overloading as follows: 

 

1. Too high acoustical volume that the microphone picks up. As most types of 

microphones have some electronics built-in, there is a maximum sound pressure level 

to process without excessive distortion. That level is specified by the manufacturers of 

the majority of microphone types. The only way to prevent overloading here is to create 

a greater distance between sound source and microphone.  

2. Too strong signal at the input of the pre-amplifier. Obviously, here is the solution 

also increasing the distance from source to microphone. (Some pre-amp types have a 

switch which can decrease the amplification in one or two 10 dB steps to accommodate 

high acoustical volumes.) 

3. Too high level at the input of the sound system of the computer or sound recorder. 

As most microphone pre-amplifiers do not have an output volume control, the first 

possibility to adjust the signal level is the recording volume control of the computer or 

recorder. As already mentioned above, the signal can be clipped in the electronics which 

the signal passes before it reaches the recording volume control. In addition, 

overloading the audio inputs of most sound recorders or computers will cause a sudden 

 
 
Fig. 27.3.3. Positions in an audio chain for possible overloading inputs of next parts. 
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serious cross talk between the two audio channels: the signal from the left channel 

emerges also in the right channel and vice versa. 

4. In cases of audio recorders, now the signal can be controlled so that the maximum 

recording level is not exceeded. All audio recorders have a recording level control and 

a level display. For computers, similar possibilities for checking and controlling the 

recording level are present in the recording software. Therefore, avoiding clipping (or 

overmodulation) here is easy to carry out.1  

5. After manipulating the sound in the computer the result is usually played back to 

listen to it. The peak amplitude of the result might have become too high for proper 

DAC (digital to analog conversion) so that the analog signal will be clipped. The 

obvious solution is sufficient attenuation of all sample values with the same factor.  

(This position does not apply to sound recorders.) 

6. The analog (line) output signal of the computer or recorder can be too high for the 

input of the power amplifier. Usually, power amplifiers have their own volume 

controls but here the same danger exists as described above for signal clipping in the 

electronics before the controls. 

7. The last clipping possibility in the audio chain is the signal limitation by the 

speakers or phones themselves or clipping in the last power amplifier stage by 

overloading. In general, this is directly audible but many people are ‘too tolerant’ 

regarding signal distortion so that they are not aware of a substantial amount of it. To 

avoid side effects of this distortion in the perception (experiments) of the sound 

material it is necessary to adjust the volume control to make sure that the maximum 

power limit is not exceeded, for speaker/phones as well as for the power amplifier 

itself. 

 

Whether or not clipping occurs in the electronics before the recording volume control 

can be tested by connecting the (high-volume) sound source with the recorder’s or 

computer’s input, setting the recording volume low enough to prevent overloading the 

recorder or computer by checking its recording level display, and test the waveform 

during playback. Some maximum input voltages of the line inputs of a few devices 

found in this way:  

sound card in pc1: 1.45 V 

sound input pc2: 1.0 V 

sound card in pc3: 2.5 V 

recorder Zoom H2: 600 mV 

recorder Edirol R09: 4.9 V 

recorder Edirol R1: unlimited (input is directly connected with level control) 

 

You can see that these clipping levels can vary a lot and that some maximum input 

values are lower than the ‘professional’ line output voltages. In general, connection of 

a ‘professional’ device having a line output of 4 dBu, with a ‘consumer’ device 

 
1   Very short sound segments (‘bursts’ or ‘transients’) can be too short for proper indication on the 

older (slow) types of VU meters. One turns-up the recording level until the display shows a 

sufficient value, causing almost certainly clipping of the signal. Modern electronic VU displays are 

very fast and hold the peak levels a bit longer so that proper adjustment is possible. 
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having a line input of -10 dBV may easily cause clipping in the receiving device. 

 

The headroom is the amplitude range between the maximum recording level and the 

clipping level. So, only ‘consumer’ devices with sufficiently headroom can be 

connected with ‘professional’ devices without clipping problems. 

 

Obviously, the recording level control should be adjusted such that the highest peak of 

the input signal should not exceed the maximum ADC input voltage. On the other 

hand, the input signal should not be attenuated too much because it would ‘use’ only a 

small part of the possible number of amplitude steps and the number of bits would be 

limited, raising the sample noise. Because the intensity fluctuations of the input sound 

are huge (60 dB means a factor 1000 in amplitude, for example), the recording level 

should preferably be displayed on a log scale. The level indication (commonly still 

named ‘VU meter’ after Volume Units) on the audio recorders or in the computers 

usually approximates a logarithmic response, whereby the maximum level is defined 

as 0 dB. To avoid overloading, there is often arranged for a safe margin of about 3 dB. 

In practice, it seems that the majority of the ‘sound engineers’ tends to set the 

recording level too high. The peaks in the signal occur not very frequently and the 

average level is much lower so that the recording level seems quite low. To ‘see the 

signal’ clearly, the level is raised and the chance that peaks are clipped is higher. (See 

also the next segment about signal-to-noise ratio in this respect.) 

 

To simplify adjustment of the recording level, some recorders have an ‘automatic 

volume control’ feature. If a sudden peak in the signal intensity occurs, the 

amplification factor is decreased very fast, such that the maximum recording level is 

not exceeded. After that, the amplification is increased very slowly, until a next signal 

intensity peak causes sufficient decreasing again of the amplification. In this way, the 

amplification is matched to the peaks in the signal intensity and will not change 

substantially. Of course, the sudden decrease of amplification will distort the 

waveform of the start of sudden signal bursts ‘transients’. Together with the property 

of fluctuating amplification, this feature is not quite suitable for sound analysis. 

Fortunately, in most recorders this feature can be switched off. 

 

Another means of avoiding clipping is the ‘signal limiter’. This device provides for a 

gradual decrease of the amplification as the (absolute value of the) amplitude 

increases. This manipulation works ‘direct’ on the waveform and, therefore, lacks the 

distortion of transients as in the case of the automatic volume control. However, the 

signal waveform is altered already at much lower levels than the absolute maximum 

which means that distortion occurs already from medium levels on, to the maximum. 

(See also the next section about distortion.) 

 

A final note about built-in microphone pre-amps: 

The use of the microphone input of a standard sound card, or the mic input of a laptop 

would make the use of a mic pre-amplifier superfluous. However, these inputs can be 

overloaded quite easily: the clipping threshold is about 50 mVeff which is reached with 
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a commonly used condenser mic at approximately 110 dB SPL. Especially when the 

distance between mouth and mic is short (as is advisable in connection with the 

suppression of background noise and chamber resonances) this upper SPL limit can be 

too low. This means that it is important to avoid using the mic inputs of pc’s and laptops. 

Using the line inputs instead (or, depending on the software, setting the mic input at 

line level), together with a proper microphone pre-amp, is a much better solution. 

(Obviously, the mic pre-amp should not produce a too high output voltage for the line 

input of the computer or recorder.) 
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27.4. Signal to noise ratio 

 

The signal to noise (S/N) ratio has been mentioned many times in the book already. It 

is a convenient measure to define an important aspect of quality of a (recorded) sound. 

Formally, the S/N ratio is the power of a ‘clean’ maximum audio signal, usually one 

sinusoidal component of 1000 Hz, divided by the power of the noise, expressed in dB’s. 

From section 2 you may know that, for amplitudes (or rms values) the ratio in dB’s is 

20*log(vS/vN), where vS is the signal amplitude and vN the noise amplitude, represented 

as voltages. For practical reasons, the level of the signal is measured inclusive the noise. 

So, strictly speaking, the power formula should be 10*log[(PS+PN)/PN)]. In practice, 

this error is ignored because, usually, the signal level is much higher than the noise 

level. As you know from section 15 about noise, its average power depends on the 

frequency range of its spectrum. Therefore, the S/N ratios are specified for a 

‘bandwidth’ (frequency range) from 20 Hz to 20 kHz. 

 

Especially, in earlier times of analog audio processing, all commercial audio equipment 

companies competed with each other to specify low S/N ratios for their products. 

Figures like 65 or 70 dB were seldom exceeded, mainly because of the limitations of 

the recording media (vinyl records, magnetic tape). Now, in this digital era of audio 

recording and processing, the noise of the digital ‘medium’ itself consists only of 

‘sample noise’ which can be chosen almost freely by the number of bits of the sample 

values. This ‘number precision’ then is an economic matter (see section 24 about signal 

compression). The remaining crucial parts w.r.t. noise are the ADC (analog digital 

converter) and microphone pre-amplifier electronics. In this light one can question the 

contribution to the audio quality of the 24-bit precision of the ‘high end’ recording 

equipment. As you may know from section 17, the theoretical S/N of 16-bit precision 

as applied in the standard CD and common sound cards is about 98 dB. When peaks of 

the acoustical volume are allowed to a level of, say, 110 dBSPL, the acoustical noise 

would amount to 12 dBSPL only. This level is far below the residual noise of even a 

special built sound isolated room. Therefore, the intensity range of 16-bit audio is more 

than enough. The theoretical intensity range of 24-bit audio is 146 dB, which can be 

labeled as ‘ridiculous’. In practice, this S/N figure cannot be approximated at all, neither 

by the ADC, nor by the electronic amplifiers. In addition, the thermal noise of the 

microphone itself limits it theoretical S/N ratio to less than 65 dB (see section 26.6 

about microphone types). Even more, the unwanted acoustical background noise 

usually produces a much higher voltage in the microphone than the voltage of its noise 

floor. 

 

The earlier analog registration systems of sound had a big disadvantage compared to 

the digital recordings: copying recordings multiple times decreased the S/N ratio each 

time about 3 dB (when the recording levels were always adjusted optimally). So, it was 

advisable to ‘start’ with a S/N as high as possible. The digital recordings, however, can 
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be copied as many times as one wants, without any degradation of quality. There is no 

need any more to raise the S/N in this respect too. 

 

As may be clear, the specifications of frequency range (see section 27.2) and S/N ratio 

of a device are not independent of each other. As the bandwidth of the noise is 

increased, the noise power increases as well, causing the S/N ratio to decrease. Also, 

the allowed distortion has some influence on the other two specifications, as a higher 

distortion factor allows increasing the maximum signal level. Therefore, it makes not 

much sense to compare different brands of equipment by the figures of a single feature.  

 

A commonly used alternative method to measure the S/N ratio is via spectral 

‘correction’ by A-weighting, which takes into account the different sensitivities to 

different frequencies of the human hearing. In fig. 27.4.1 the ‘equal loudness contours’ 

of the human hearing are displayed on log scales. The graphs are modified versions of 

the original curves found by Fletcher and Munson in 1933. As you can see, the 

sensitivity for very low frequencies can be roughly 50 dB lower than the sensitivity at 

1000 Hz, depending on the intensity. The reference frequency for the perceived 

intensities is 1000 Hz, measured in phons. The ‘standard’ A-weighting curve has been 

derived from the 40-phon curve and is a simplified reverse version of it, as displayed 

in fig. 27.4.2. This curve represents a commonly agreed normalized ‘correction’ of the 

 
 
Fig. 27.4.1. Equal loudness contours of the human hearing. 
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human perception of sound intensity as function of frequency. Unfortunately, the A-

weighting curve is only valid for one intensity level (the quite low loudness value of 

40 phons). There are other weighting norms for higher intensities, like the B and C 

curves, but they are seldom applied. In sound intensity meters (‘dB meters’), for 

example, there are usually two measure possibilities only: linear, specified as dBSPL and 

A-weighted, specified as dBA. 

When S/N measurements of audio devices are A-weighted, the spectrum of the noise is 

multiplied by this function, causing attenuation of low and high frequencies, w.r.t. the 

center frequency around 1000 Hz. Obviously, the A-weighted S/N ratios will be more 

favorable than the ‘linear’ S/N ratios. That may explain why many companies define 

the S/N ratios of their equipment as A-weighted ratios... 

 

As already mentioned in the preceding section, the sample noise is the lowest when the 

whole range of the ADC is covered by the signal amplitude. Therefore, people tend to 

turn-up the recording level. The levels of the signal peaks, however, are quite 

unpredictable so that the danger of clipping increases. When the input level is halved, 

the S/N ratio is decreased with 6 dB only. On the total range of 98 dB this is of minor 

importance, while the clipping danger has practically vanished. Although many people 

think that a low recording level means a bad S/N ratio, the truth is that, with exception 

of extremely low recording levels, the overall S/N ratio highly depends on the input 

electronics of the microphone preamp. As, generally, this electronic part is working on 

the signal before its recording level is controlled, this means that the position of this 

control is of minor importance w.r.t. the S/N ratio. 

 

 

 

 
 
Fig. 27.4.2. A-weighting curve (ANSI standard). 
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So, the effects of overloading being severe, the best compromise then is to give the 

avoidance of clipping much higher priority than lowering the null noise from the 

equipment. This is even more true when you bear in mind that the acoustical 

background noise’s intensity is much higher.  
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27.5. Distortion 

 

When the relation between the output signal and the input signal of an amplifier (the 

gain function) is presented in a graphic way, this would result in a straight line of which 

the slope represents the amplification factor which is equal to the tangent of the angle 

with the horizontal axis. A waveform at the input will produce the same form of that 

waveform at the output, only with a different scaled amplitude. When the output/input 

relation is a curved line, the amplification is not fixed but depends on the slope at the 

position on the graph: the form of the output waveform differs from that of the input 

and the signal has been distorted. See fig. 27.5.1 for an example of this distortion of a 

sine wave. 

This type of distortion is commonly called ‘non-linear distortion’ to distinguish it from 

‘linear distortion’ which refers to the unwanted filtering of the signal, like unwanted 

limitation of spectral range or deviation from the spectral target. Unlike this linear 

distortion, having the possibility to correct it afterwards by reverse filtering, the non-

linear distortion cannot be corrected afterwards. (An extreme example of non-linear 

distortion is the clipping of the signal, as described in section 27.3.)   

 

So, in practice, amplifiers or other analog devices are designed in such a way that their 

gain functions are as straight as possible to minimize the waveform distortion. Many 

electronic amplifying components function in such a way that their gain curve has a 2nd 

order form, producing 2nd order or quadratic distortion. (In fact, the curved gain 

function in fig. 27.5.1 is a quadratic one.)  

 

 
 
Fig. 27.5.1. Left: undistorted amplification of sine wave. Right: amplification with 
distortion of wave form by curved gain function. 
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The spectral effects of the quadratic distortion of signals are demonstrated in fig. 27.5.2, 

where the spectral changes are shown for one single sinusoidal wave (upper part) and 

the spectral changes for a signal containing two sine components (lower part). In case 

of a single frequency component, one extra component emerges with double frequency 

(and a DC component). In case of two frequency components, the extra emerging 

components are the two double frequencies, their sum, and their difference (and a DC 

component). So, the extra components that emerge are all possible double, sum, and 

difference frequencies. You can imagine that, in practice, the number of ‘spurious’ 

components can become very large for sounds which have many spectral components. 

Especially, the sum and difference frequencies are disturbing because, in general, they 

bear no harmonic relation to the original components in the signal. The distortion which 

consists of sum and difference frequencies is also called intermodulation distortion. As 

you can read in section 10 these sum and difference frequencies result from amplitude 

modulation which occurs by multiplication of frequency components. In fact, distortion 

components occur by multiplication of the signal components by themselves. The 

number of these multiples depends on the order of the output/input function. 

 

For clarity, the amount of distortion in the examples of the figs. 27.5.1 and 27.5.2 is 

very great as the used part of the quadratic curve is chosen to be large. Fortunately, in 

the electronic circuitry of amplifiers the amount of distortion can be greatly decreased 

by negative feedback which limits the part of the curve used for the signal amplitude 

range. (Explanation of this negative feedback principle falls beyond the scope of this 

book.) Distortion figures like 0.01% or less are quite common for practical amplifiers. 

The distortion of loudspeakers, however, is much greater, depending on the produced 

 
 
Fig. 27.5.2. Left: spectra of undistorted sine wave(s). Right: the spectral effects after 
quadratic distortion of the waveforms. 
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volume, and may easily reach values like 5 % or so.  

 

The tendency among some audio electronics users to apply electronic tube amplifiers 

instead of transistor amplifiers to ‘improve’ the audio quality of the sound can be at 

least labeled as ‘astonishing’: the gain function at the input of a tube amplifier is the 

quadratic one in fig. 27.5.1. The emerging sum and difference frequencies of all 

combinations of two of the spectral components of the input sound will produce a great 

number of non-harmonic components which have nothing to do with the original sound. 

In addition, the common opinion among this group of ‘audiophiles’ about negative 

feedback is that it must not be applied at all which means that the signal uses a 

substantial part of the curve and will yield a high distortion percentage. One peculiar 

phenomenon of some tube amplifiers is that the sound of an amplitude modulated (AM) 

radio station can be heard at low volume! How is that possible, because an amplifier is 

not a radio? The carrier frequency of an AM radio station is too high to pass through 

any audio amplifier (even if it is a tube amplifier without negative feedback). The 

quadratic function ‘multiplies’ each sinusoid component by itself so that the difference 

component is a DC component when there is no modulation, i.e. when there is a silence 

in the radio program. When there is modulation, however, the difference contains all 

audio frequency components. (See section 10 about amplitude modulation and 

demodulation.) So, when you hear music coming out of the speakers or phones without 

any music source coupled with the equipment then you have a badly curved input 

characteristic, and a poorly shielded input circuit. Ten to one it’s a vacuum tube 

amplifier... 

 

How is the percentage of distortion defined? The distortion produces a number of extra 

frequency components added to the components of the audio signal. Because the 

distortion for each signal frequency component may be different, the distortion is 

defined for one ‘standard’ signal frequency only, usually 400 Hz or 1000 Hz. When the 

distortion figure is given, the applied frequency should be mentioned as well. The 

distortion of one signal component can contain many components, as shown above. 

Therefore, the adopted definition of the distortion figure is: divide the total energy of 

all distortion components by the energy of the clean signal component. This energy 

ratio is then ‘converted’ to a voltage ratio and expressed as a percentage. This means 

that the total rms value of all components of the distortion together is expressed as a 

percentage of the rms value of the clean signal component. (Sometimes the distortion 

is expressed in dB’s, which thus refers directly to the power ratio or energy ratio.) To 

get the value of all distortion components, the total output is notch-filtered which almost 

completely suppresses a narrow part of the spectrum which contains the signal 

component frequency; then the total rms value of the output is measured with an AC 

voltmeter (AC means alternate current which is the opponent of DC, as mentioned in 

section 6). The clean signal component is usually not achieved by band filtering but is 

approximated by measuring the total output, being the signal plus distortion. In practice, 

the error is negligible when the distortion is low.  

 

Most analog devices have the lowest distortion at mid-values of the frequency. At very 
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low or very high frequencies, the distortion figure can be substantially higher. It might 

explain why the audio equipment manufacturers define their distortion figures usually 

at 1000 Hz. 

 

Some audio recorders are equipped with a feature to avoid clipping of the signal by a 

limiter or compressor (as mentioned in section 24, the meaning of the word 

compressor here differs from the data compression as described in that section). The 

output/input relation of a limiter has a strong curvature for high amplitude levels and a 

straighter line for low levels. Fig. 27.5.3 displays one example of the many different 

limiter functions used.  This function is defined by the formula: 

 𝑣𝑜 =
1

1+𝑒−5𝑣𝑖
−

1

2
⁡⁡⁡  (27.5.1) 

As you can see, the distortion for a sine wave of which its maximum input amplitude 

reaches the strong curvature area of the function is quite high and consists of a great 

number of components. (As explained in section 6 the symmetry of the positive and 

negative part means that the spectrum contains only odd harmonics.)  At this input 

amplitude the limitation factor is about 40 % (the amplification near zero is maximum 

and is equal to 1.25; the unlimited output value would be 0.6 x 1.25 = 0.75; the value 

from the formula is 0.4526 which is 39.7 % of 0.75). Naturally, such a strong limitation 

 
 
Fig. 27.5.3. Example of an amplitude limiter. The spectrum shows the distortion 
components as odd multiples of the input signal frequency, here causing 8 % distortion. 
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causes a high distortion factor. In this example the estimated distortion figure is about 

8 %. When the input amplitude is halved to 0.3, the limitation factor is about 18 % and 

the distortion in that case still is about 4 % which is definitely unacceptable for 

‘hi-fidelity’ audio or signal analysis purposes. Of course, there are numerous limiter 

systems which produce less distortion by applying a straighter line at lower amplitudes 

but, consequently, they need stronger curvature at higher amplitudes. In all systems, the 

actual amplitude limitation needs curvature of the output/input relation so that the 

distortion then is too high for many purposes. 

 

Better, therefore, is to avoid using limiters at all and care for a proper control of the 

input amplitudes of all audio devices instead. 
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27.6. Microphones, acoustics 

 

The microphone acts as a transducer which converts the air pressure fluctuations of the 

sound to proportional electric voltage. The subject of microphones is very broad which 

is reflected by the huge number of books on this subject. Instead to try to cover this 

field completely, here the subject will be limited to a description of the working 

principles of a few of the most commonly used types and their properties. 

 

One of the microphone types 

which has been used from the 

beginning of the audio electronics 

and is still used is the dynamic 

microphone. Its working is based 

on the electromagnetic induction 

principle of Faraday: when electric 

current flows through a wire, a 

magnetic field occurs around the 

wire. When this wire is placed in a 

static magnetic field, a force is 

applied to the wire, the direction 

depending on the polarity of the 

current and the magnetic poles. 

The reverse is also true: when the 

wire of the electric circuit is moved 

within a (static) magnetic field, this 

movement will cause a current to 

flow through the wire. The faster 

the movement, the higher the current. In practice, the effect is enhanced by winding the 

wire into a coil which highly concentrates its magnetic field as all the windings add to 

the total magnetism. Using this principle, a microphone can be constructed, see 

fig. 27.6.1. The diaphragm is moved back and forth by the sound waves in the air. The 

coil with all windings is moving with it, so that alternating current flows in the electrical 

circuit of which the coil wire is a part. The voltage alterations across this coil are an 

electric representation of the sound pressure and can be amplified by the microphone 

pre-amplifier. For obvious reasons this type of microphone is also named as ‘moving 

coil microphone’. Because the movements of the diaphragm are extremely small (i.e. 

maximally around 0.5 µm/Pa which is comparative to the movements of the eardrum), 

the power of this electrical source is also very low. The power is independent of the 

number of windings, as a relative high voltage by applying many windings causes a 

reversely proportional low current and, vice versa, a small number of windings causes 

a low voltage and a relative high current. (Remember that power is equal to voltage 

times current.) In the first case, the microphone is of the high-impedance type, in the 

second case it is a low-impedance type. The properties of the pre-amplifier used has to 

be matched to the impedance of the microphone. As for frequency range and flatness 

 
Fig. 27.6.1. Dynamic microphone. 
1: Soundwaves in air. 2: Diaphragm. 3: Spacer. 
4: Coil. 5: Electrical connections. 6: Magnet. 
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of the frequency response curve, the low-impedance type is preferred. Its low output 

voltage is a minor problem as the modern electronics makes it possible to construct 

low-noise pre-amps that have sufficient amplification for the low output voltage (about 

1.5 ... 2 mV/Pa) of the low-impedance types. However, even when the pre-amplifier 

would add no noise at all, the S/N ratio of the microphone with pre-amp will be limited 

by the thermal noise which emerges in all electrical conductors, like the coil of the 

microphone. For example, when the impedance is 200 Ohms (which is a common value 

for low-impedance dynamic microphones), the thermal noise voltage according to 

formula 15.2 in section 15 equals 0.257 µV (microvolt) for a frequency range of 

20 kHz. When the microphone sensitivity is 1.8 mV/Pa, which is also a common value, 

the S/N ratio is: 20 log (1800/0.257) = 76.9 dB. (Which is substantially lower than the 

S/N ratio of a 16-bit AD convertor, while the sound level of 1 Pa = 94 dBSPL is quite 

loud.)  

 

Of course, the output power of the microphone can be improved by applying a stronger 

magnet and a higher-surface diaphragm. The latter, however, limits the maximum 

frequency which can be processed without significant attenuation and deviations from 

a straight frequency response curve. 

 

A useful way to express the noise properties of microphones is the ‘self-noise’. In the 

example above, the self-noise is equivalent with 94 – 76.9 dBSPL = 17.1 dBSPL which 

can be seen as a noise sound source of 17.1 dB which is picked up by the microphone, 

regarded as noiseless. (In practice, this self-noise figure example indicates a fairly high-

quality mic w.r.t. its noise properties.) 

 

A special type of dynamic microphone is the ribbon microphone. The ‘coil’ here is no 

real coil but a flexible corrugated metal ribbon which is positioned between the poles 

of a strong magnet. The sound in air moves the ribbon in a direction perpendicular to 

the magnetic field direction so that (low) voltages are generated between the ends of 

the ribbon. 

 

A different type of microphone which has become most widely used now, is the 

condenser microphone. Its working principle can be best clarified by first explaining 

the condenser (or capacitor), see fig. 27.6.2. The condenser can be ‘charged’ or ‘loaded’ 

by connection of a voltage source. Between the plates, an electric field arises due to the 

loads of opposite polarity. When the voltage source is removed, the capacitor remains 

its charge so that the voltage which had been applied remains present across the 

capacitor and the electric field continues to exist. The amount of charge (i.e. the number 

of electrons or positive ions) for a given voltage is proportional to the surface of the 

plates and reversely proportional to the distance between the plates. Also, the choice of 

isolation material between the plates (the dielectric) effects this amount of charge. This 

amount of charge per voltage is the capacity of the condenser: C = Q/V, where Q is the 

load in coulombs and V is the voltage. (Actually, Q represents an absolute amount of 

electron loads, equivalent to the number of electrons that flow through an electric wire 

by a current of 1 ampere during 1 second, which is about 6.3 x 1018.) The capacity of a 
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condenser is expressed in farads (indeed, from Faraday) which is a very large unit in 

practice. Therefore, the capacity of condensers is usually expressed in µF (microfarad, 

which is 10-6 farad), or even pF (picofarad, which is 10-12 farad). If, instead of a battery, 

an AC (alternating current) source is connected, the capacitor will be loaded, unloaded, 

reversely loaded, and reversely unloaded, etc. ad infinitum. It seems as if alternating 

current flows through the capacitor. In reality, the current flows through the wires and 

the current source but not through the capacitor. For the ‘outside world’ it seems that 

the capacitor is a kind of conductor for AC.  

 

The disconnected charged condenser does not hold its load forever: the isolation is not 

absolute and some stray electrons will move through it. In practice, the condenser’s 

load will vanish after a few seconds only. For short times, however, the load present in 

the condenser can be regarded as being constant. When the capacity is changed within 

this short time (for example by alteration of the plates distance) the voltage will change 

because Q is constant. An increase of the plates distance, for example, will decrease the 

capacity and, therefore, increase the voltage across the condenser, and vice versa. This 

is the principle of the condenser microphone, see fig. 27.6.3. The two ‘plates’ of the 

capacitor are created by the diaphragm (or membrane) and the backplate. The capacity 

of the system varies according to the sound pressure variations so that the voltage across 

the condenser varies reversely proportional to the sound pressure. In this type of 

condenser microphone (the electret microphone) the necessary constant load to the 

capacitor is built-in in a layer on the diaphragm material or on the backplate. The layer 

consists of a special kind of semiconductor which received its load at its fabrication. 

The load particles are locked within the semiconductor material which can hold its 

charge during hundreds of years. (Older types of condenser mics used an external high 

voltage of up to 200 V applied to the backplate to provide for the constant electrical 

load.) The capacity of the condenser mic is only about 15 to 80 pF. This implies that 

the impedance of the ‘sound source’ of this condenser mic is very high which means 

 
Fig. 27.6.2. Capacitor principle. A: basic model with two electrically isolated 
conductive plates. B: positive ions and negative electrons are balanced. C: free 
electrons of left plate move to the positive battery pole; electrons from the negative 
battery pole move into the right plate and recombine with the positive ions. Between 
the plates an electric ‘field’ emerges through which no current flows (grey area). 
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that it cannot feed its signal through a cable to the pre-amplifier. (The capacity of the 

cable itself would attenuate the microphone signal almost completely.) Therefore, the 

transistor is needed to function as an impedance convertor. A transistor needs some 

power to be able to function. The power voltage is supplied by the pre- amplifier used, 

via the microphone cable. (A commonly used method to realize this is the phantom 

powering, which is explained at the end of this section.) 

 

The signal voltage from a typical 

condenser type of microphone with 

a diaphragm diameter of ½ inch is, 

roughly, 10 times of that of a 

comparable dynamic type. The 

necessity to a high input 

impedance of the connected 

electronics to (i.e. the transistor in 

the microphone case) implies that 

the thermal noise level is higher 

than that of the dynamic 

microphone. Still, the S/N ratio can 

be acceptable because of the higher 

signal voltage of the condenser 

microphone. In addition, the output 

voltage of condenser mics can be 

improved by applying a very 

narrow space between diaphragm 

and backplate. Also, the surface 

area of the diaphragm and 

backplate can be increased, 

however, the larger the surface, the more the mechanical resonance frequencies will 

corrupt the linearity and level of the frequency response for high frequencies. 

 

A different type of condenser microphone is the HF (high frequency) system. It does 

not work as a loaded or pre-loaded condenser but as a condenser as frequency defining 

element in a high-frequency oscillator (generator). A nominal frequency of, say, 8 MHz 

(megahertz) is frequency-modulated by the variations of the capacity and then 

demodulated to extract the audio frequency components. The gain of this more 

complicated design is the possibility to create a much lower impedance of the source 

of the mic: just about 1500 ohm instead of the millions of ohms of the charged 

capacitor. The much lower impedance means a much lower self-noise. This type offers 

the best S/N ratio of all dynamic and common condenser microphones (electret or 

external charge voltage). 

 

Apart from dynamic, (coil or ribbon) and condenser microphones, there exist other 

types, like piezo, carbon, ceramic and even laser beam ones. The principles of the two 

 
Fig. 27.6.3. Condenser microphone. 
1: Soundwaves in air. 2: Diaphragm with electret 
layer. 3: Backplate. 4: Isolator. 5: Transistor. 
6: Electrical connections. 7: Metal housing. 
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types described above, however, cover the majority of types used and, therefore, 

explaining all different types will be omitted in this book. 

 

The choice of the microphone is not critical when the distance between sound source 

and mic is lower than, say, 30 centimeters or so: even the most ludicrously cheap 

electret types produce a reasonable sound quality. For head-mounted types, however, 

the mic is positioned so near the mouth that the danger of overmodulation, and thus 

clipping, emerges. Especially, the cheap kind of electret microphones use a power 

supply voltage of only a few volts (often only 1.5 V provided via the microphone input 

of a computer or laptop). Even if the signal is not clipped, the distortion for high sound 

levels can be quite high in most cases. Usually much better are the ‘USB microphones’ 

which convert the 5 volts of the USB connector to a higher value as, for example, 

12 volts or higher. A word of caution here: some USB microphones do not sufficiently 

stabilize the power voltage: the USB power source of a computer is mostly far from 

‘clean’ and components of many different frequencies are present as fluctuations of the 

nominal value of 5 volts. When the power voltage is not thoroughly stabilized, these 

frequency components may occur partly within the range where the ear is most sensitive 

so that they can become audible as soft, ever changing tones at the background. Of 

course, this decreases the S/N ratio. However, the specifications of the microphones are 

usually measured by the manufacturer using a ‘clean’ supply voltage. 

 

As the distance between sound source and mic increases, the quality of the microphone 

becomes more important, as the output voltage decreases and, with it, the S/N ratio. In 

addition, the sound quality decreases w.r.t. background noise and room resonances. 

Whereas the noise of a dynamic microphone is mostly determined by the thermal noise 

of the coil (at least if the noise of the pre-amplifier used is negligible), the S/N ratio will 

not vary much for most types on the market: generally, it will fall within the range 

65...78 dB. The noise of a condenser microphone, however, depends mainly on the 

capacity, the surface area of the diaphragm, the electrical charge (whether or not built-

in), and the transistor used. Indeed, the self-noise of condenser microphones on the 

market differ greatly and, unfortunately, this specification is often not mentioned at all 

by the manufacturers, especially for the cheap products. The self-noise of cheap 

condenser mics will be much higher than that of the dynamic ones. The self-noise of 

the best ‘low noise’ condenser mics (except the HF types), still is some dB’s higher 

than the self-noise of the dynamic types with equal frequency range. Only with the HF 

condenser types it is possible to realize lower self-noise and thus a higher S/N ratio than 

with dynamic mics. 

 

Generally, the factory specifications of S/N ratios and self-noise are better than the 

figures 65...78 dB and 17.1 dB, respectively, as mentioned before. This is caused by 

the fact that the mic manufacturers all give these data “A-weighted” which means that 

the noise output has been filtered with the standardized “A-weighting curve” (see 

section 27.4: from fig. 27.4.2 you can see that the frequencies in the lower area are 

attenuated considerably). Over the entire frequency range (20 kHz), filtering or not 

makes only a difference of 2.4 dB if the intensity values were evenly distributed along 
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this range but... in the case of a condenser mic the noise increases as the frequencies 

decrease: the noise is not ‘white’ but ‘brown’ or -6 dB/oct.  So, the relatively high noise 

intensity at low frequencies is attenuated considerably and the overall S/N ratio and the 

self-noise specifications are much favorable when the sound is “A-weighted”! One 

could argue that the ear is less sensitive for this lower frequency area noise (that is the 

whole idea of this A-filter after all). When the sound is to be analyzed, however, then a 

high level of this low-frequency noise can cause inaccuracies or even errors.  

 

For recording low intensity sounds at high distances between mic and sound source, the 

self-noise becomes very important. In the opposite case, for high intensity sounds and 

microphones placed very near the sound sources, the maximum sound pressure that the 

microphone can process without too much distortion is of paramount importance, 

together with the maximum input that the pre-amplifier can accept. There exists no 

single microphone/pre-amp combination which is suitable for all sound levels: the 

dynamic range of the sound intensity simply is too large. 

 

When the self-noise is not specified, the S/N ratio may be mentioned instead. In that 

case, the self-noise can be easily determined by subtraction of the S/N ratio from 

94 dBSPL, being the SPL of 1 Pa. 

 

An important feature of microphones is the directional sensitivity. Microphones with 

an equal sensitivity for sounds from all directions, the omni directional types, are 

pressure transducers: they react on air pressure. In these types the space at the rear side 

of the diaphragm is enclosed so that the air pressure variations only affect the front side 

of the diaphragm. Thus, the position of the diaphragm plane w.r.t. the sound source has 

no influence on the sensitivity. Microphones can be constructed differently so that the 

rear side is open to the sound waves as well. In that case, they are pressure gradient 

transducers. They react to the pressure difference between front and back of the 

diaphragm. The ribbon microphone is a pressure gradient transducer. 

 

To specify the relative variation of sensitivity in all directions, a direction diagram is 

used. Although the sensitivity depends on the direction in three dimensions, it is 

customary to present directional diagrams or polar patterns of microphones in a 

two-dimensional form as ‘seen from above’, see fig. 27.6.4. For omni-directional types,  

the polar diagram is a circle. When the microphone is a pure pressure gradient type like 

the ribbon type, the polar pattern is a figure-of-eight. A combination of a circular and a 

figure-of-eight diagram yields a cardioid diagram. (The figure-of-eight and the cardioid 

patterns differ from the ‘pure’ forms as the distances are presented on a log scale which 

is the usual presentation form.) 

 

The 0-dB reference of the dB scale is defined at a fixed position in the diagram. Of 

course, the sensitivities of the different directional patterns at this position are not the 

same: in fact, the sensitivity of a cardioid mic in this position is about 4.3 dB higher 

than that of an omnidirectional mic with all other properties equal. In other words: the 

forward gain is 4.3 dB. Different combinations of pressure and pressure gradient 
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systems produce various kinds of cardioid diagrams like super cardioid and hyper 

cardioid. The ultimate directional mic with a very tight polar pattern is the shotgun 

microphone; it has the highest forward gain. It contains an array of several microphone 

elements in a line and its working is based on the phase differences caused by the 

distances between the elements. It is used for situations where the sound sources are 

relatively far away from the mic, i.e. recordings of animal sounds in nature. The 

frequency response, however, is not very linear. 

 

The general polar patterns specified by the microphone manufacturers are valid only 

for 1000 Hz. The higher the frequency, the more irregular the polar pattern, partly due 

to sound reflections by the mic housing. See fig, 27.6.5 for an example of cardioid 

microphone polar patterns for different frequencies (Sennheiser E 835). As the polar 

patterns are always symmetrical, only one half is presented; the low range up to 

1000 Hz at the left side, the high range from 2000 Hz on, at the right side. You can see 

that for frequencies below about 500 Hz the pattern is almost circular whereas the 

patterns for very high frequencies become very irregular. 

 
Fig. 27.6.4. Polar patterns of microphones. The cardioid diagram (green) emerges by 
combination of the omnidirectional (grey) and the bidirectional (black and red) diagrams. The 
phase of the red half of the bidirectional pattern is opposite to the other patterns phase. 
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Which type should be used, omni-directional or uni-directional? Not surprisingly, it 

depends on the purpose of the sound processing action. Basically, the pressure 

transducers have a constant sensitivity for the whole frequency range, whereas the 

pressure gradient transducers, which in fact react on velocity of air particles, have a 

sensitivity proportional to the frequency. To approximate a straighter frequency 

response curve, the mechanical construction applies a combination of (overlapping) 

resonances. Alternatively, an electrical filter low-pass filter is used. Nevertheless, for 

recordings of very low frequencies or for accurate sound measurements, the uni-

directional types should better be omitted. Another typical property of uni-directional 

mics is the proximity effect. When the distance between sound source and microphone 

becomes very short (about 20 cm or less) the sensitivity for low frequencies is increased 

w.r.t. mid and high frequencies. Although this is generally undesired, it is used 

sometimes to emphasize the low-frequency sound intensity of solo singers. A third 

property of directional mics is their susceptibility to wind noise, which is much stronger 

than that of the omni-directional types. The most important property of uni-directional 

microphones is their ability to improve the S/N ratio for sounds coming from the front 

direction by attenuation sounds from other directions and emphasizing the sound from 

the front by the forward gain. However, the best way to improve the ratio of the desired 

sound and the background noise is to position the mics very near the sound source 

(because the SPL of a sound source decreases with the same ratio of which the distance 

increases, see formula 1.2 in section 1), but if this is not possible, the use of a uni-

directional microphone may be the only solution. 

 

For recordings, made in 

normal rooms (as opposed 

to concert halls, sound 

isolated booths, or quiet 

outdoor places), the self-

noise of the microphone(s) 

is of minor importance, 

even at long distances, as 

the usual background 

noise (from air 

conditioning systems, 

traffic noise, computer 

fans, etc.) will mostly have 

an intensity above 35 dB, 

which is more than four 

times the equivalent self-

noise (say, 22 dB) of a 

medium quality 

microphone. So, for 

recordings of sounds in 

‘normal rooms’, the 

 
 
Fig. 27.6.5. Polar patterns of cardioid microphone for 
different frequencies (Sennheiser type E835). 
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conclusion then is: forget all lyrical remarks about so-called “high end” microphones: 

that is a waste of money when used for these recordings. For recording of speech: try 

to get a “head mounted” microphone which, if possible, is unidirectional and preferably 

must be powered by 9V or more. 

 

And which type is better, dynamic or condenser? Again, this depends on the 

application. The condenser microphone has a more linear frequency response than the 

dynamic type, as the coil of a dynamic microphone has more mass, and thus lower 

resonance frequency effects compared with the very thin diaphragm of the condenser 

mic.  For high accuracy sound level measurements, only a small diaphragm omni-

directional condenser mic is appropriate. (A large diameter diaphragm offers a higher 

sensitivity and a higher S/N ratio but the high frequencies produce resonances in the 

membrane which cause peaks and throughs in the frequency response curve.) The 

processing of very high sound intensities is best done by dynamic types. Also, their 

resistance against moisture and shocks is great, in general. They do not need power but 

a state-of-the-art microphone pre-amp is important w.r.t. thermal noise. 

 

‘Phantom powered’ condenser microphones have the advantage that the mic cable can 

be quite long without interference signals which compromise the sound quality, like 

humming and cracking, (i.e. 15 m or so is no problem at all). This is not caused by the 

phantom powering, which is only a method to provide for power to the electronics in 

the microphone, but by the low impedance created by the electronics used and the 

symmetrical coupling of the microphone with pre-amp. Naturally the recorder or pre-

amplifier then should have this phantom powered input facility. The principle of this 

phantom powered connection between microphone and amplifier is clarified by 

fig. 27.6.6. Both leads of the microphone cable receive the power voltage from the pre-

amp via resistors (R). The microphone electronics receives its power from the signal 

leads w.r.t. the shield of the cable. (The shield is a flexible metal wrapping around the 

signal leads to protect them from picking-up electrical noise signals from the 

surroundings.) 

 

The microphone electronics provides for two equal signal outputs with opposite phase 

(balanced outputs). When, despite the cable shield, spurious disturbing voltages are 

picked-up by the cable, these voltages will be equal for both leads in the cable (because 

the leads are practically in exactly the same position). The pre-amp is a difference 

amplifier: it only reacts on the voltage difference between the + and – inputs. Thus, the 

spurious noise voltages cancel each other completely by this differential connection. 

 

For dynamic microphones, which usually do not have electronics inside (i.e. the passive 

types), the symmetry of the lead voltages is created by avoiding any connection 

between coil contacts and shield (the coil is electrically floating); the input circuitry of 

the pre-amplifier cares for a zero voltage (‘grounded’) virtual mid-point so that its + 

and – input voltages have opposite phases. That is why a passive dynamic microphone 

still can be connected with a phantom powered pre-amp. It simply does not use the 
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phantom power (preferably it is switched-off if possible) but the advantage of the 

differential connection remains. 

 

 

All information about the directions where the sounds come from are contained in two 

channels, as you can conclude for yourself with your two ears (see also the remark in 

this respect in section 1 about sound). Therefore, to preserve the direction information 

of sounds in audio recordings, stereo recording is necessary. Two separate sound 

channels should be used, with two microphones, similar to our two-ear perception of 

sound.  

 

Often however, more than two microphones are used to be able to position them very 

near the individual sound sources, i.e. the musical instruments, to improve the S/N ratio. 

Afterwards, in the mixing stage, the ratio of the left and right part of each individual 

channel is adjusted to ‘place’ each sound source somewhere between the utmost left 

and right positions (‘panning’). Although this creates some spatial effect, the directional 

phase information is gone. Only stereo with two separate channels is able to 

approximate the real ability of our human two-ear spatial perception. For each 

microphone, the sound arrives at slightly different times due to the differences in 

lengths of the sound paths. The direction information is contained in the phase 

differences between the two signals, which are unique for each frequency. As already 

explained in section 3, the relation between propagation velocity of sound, frequency 

and wavelength is: 

 𝜆 =
𝑐

𝑓
 (27.6.1) 

where λ is the wavelength, c is the propagation speed of sound and f is the frequency. 

During one period of a sound wave of, say, 400 Hz, the sound wave travels 340/400 m 

in space, so its wavelength = 0.85 m. When the difference between the path lengths of 

the sound source to the two microphones is, for example, 60 cm, the phase difference 

between the times of arrival comprises 60/85 wavelengths which causes a phase 

difference of 0.6/0.85*2π = 4.435 radians. When the frequency is much higher, say, 

10000 Hz, the wave length is 340/10000 = 3.4 cm. The phase difference then is 

 
Fig. 27.6.6. Phantom powering of microphone with differential connection.  
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60/3.4*2π = 110.98 radians. (The phase angle in each bin of a spectrum cannot be 

greater than 2π radians; it is equal to the remainder after the division by 2π. The time 

delays which are greater than one period result from the whole set of angles of all 

frequency bins of the spectrum object. See section 27.1 about the spectrum 

representation in Praat.) 

 

There are a few different ways to position the microphones for stereo 

recording/processing. The most obvious way is the AB configuration: two omni-

directional or unidirectional microphones are placed in the room, both facing the sound 

source(s) at some distance. They are usually placed about 50 cm from each other, one 

at the left, the other at the right. This distance is chosen because it should be at least ¼ 

of a wavelength of the lowest frequency for containing directional information. Now, 

our ears (with our brains) cannot perceive directional information below, say, 150 Hz. 

The quarter wavelength in air of this frequency is about 50 cm. 

 

A problem arises when the stereo channels are summed to get one mono channel, which 

sometimes may be desired. When the two signals arrived via different paths they might 

cancel each other by opposite phases. The result is an unwanted comb filtering which 

causes multiple zeros in the spectrum. (When our ears receive sounds with equal 

intensity but opposite phases, we still perceive the sound: there is no cancelling as we 

do not add the two sounds in our brains.) To overcome the problem of this cancelling, 

the two microphones are placed as closely as possible: coincident stereo. The XY 

configuration is such a method: the two directional microphones are placed facing each 

other, usually with an angle somewhere between 90 and 135 degrees (see fig. 27.6.7). 

Now the phase cancellation is negligible (only at very high frequencies some comb 

filtering may be possible as the two diaphragms cannot be in exactly the same place). 

A different coincident method is the MS (middle/side) configuration, also displayed in 

the figure. Here, the center of the sound field is covered by a cardioid microphone 

facing the sound source, while the side fields are captured by a bi-directional 

microphone (the grey rectangle), its figure-of-eight polar pattern facing to the left and 

right. The signals from the two mics cannot be applied directly to the left and right 

channels but have to be pre-processed by a matrix which converts the MS signals into 

left and right signals. Therefore, the bi-directional mic signal is duplicated and phase-

inversed (output = - input). The left signal is formed by the sum of the center signal and 

the original side signal; the right signal is formed by the sum of the center signal and 

the inversed side signal. A big advantage of this system is that it is possible to adjust 

the ‘amount’ of stereo effect by controlling the volume of the center signal w.r.t. the 

side signal volumes. This can even be done afterwards with an existing recording of M 

and S signals. 

 

The disadvantage of coincident stereo is that, in principle, there is no phase difference 

between the two channels as both microphone diaphragms are (almost) in the same 

position. The spatial information can only be represented by intensity differences (that 

is why the term intensity stereo is also used). With this configuration, therefore, real 

spatial stereo cannot be achieved. This problem, however, sounds worse than it is: the 
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different delay times of sounds, arriving along different paths, remain preserved, of 

course, so that the sounds from different directions have their own arriving times, giving 

a strong sense of space. The limitation is that the experienced directions while replaying 

the sound cover only the range from left to right; all other real directions are ‘projected’ 

onto this range. 

A compromise is realized by the ‘near coincident’ configuration, like the system used 

by the NOS (the Dutch Broadcasting Foundation) as also shown in fig. 27.6.7. The 

distance between the diaphragms of the unidirectional microphones is 30 cm. Some 

alternatives exist, like the popular French ORTF system, which uses an angle of 110 

degrees and a distance of 17 cm. 

 

The artificial head stereophony, as mentioned already in section 1, mimics the human 

listening situation as accurate as possible. Two omnidirectional microphones are placed 

in a synthetic model of the human head at the positions of the human ear drums. The 

two signals are simply processed separately. (Therefore, the name binaural audio is 

also used.) When the (recorded) signals are played back via headphones, the spatial 

impression is almost ideal. When the signals are played back by two loudspeakers, 

 
Fig. 27.6.7. Various microphone positions for stereo recording/processing of sound in 
rooms or concert halls. Blue patterns are processed as left signals, red patterns as right 
signals, green is the M part of the MS system (see text). 

AB MS

NOS XY
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however, the result is found dissatisfying in general. This is not very surprising as the 

listening distance and the listening room acoustics disturb the phase relations between 

left and right signals. In addition, people in their rooms at home expect a much shorter 

distance from the listening position to the sound sources compared to the listening 

distances of the audience in the concert hall, for example.  

 

To avoid the cumbersome realization of artificial head recording, a more practical 

approximation is possible by using a Jecklin disc (named after a Swiss sound engineer). 

This disk, with a diameter of 30 cm, is placed between two omnidirectional 

microphones which are positioned 16.5 cm from each other. In this way, a better 

separation of the two acoustic signals is achieved. The disk is covered with acoustical 

absorption material to avoid unwanted reflections. A modification which Jecklin 

applied later is more suitable to playing through loudspeakers: then the distance 

between the mics is 36 cm while the disk diameter is 35 cm. 

 

A final remark about placing microphones for stereo recording: even if the signals of 

the left and right channels would resemble very accurately the SPL variations at a 

normal listening position in a concert hall (say, in the middle of the audience space), 

the result when listening to the recording via the loudspeakers at home would be 

disappointing. The main reason is that the listener at home expects a much more direct 

sound, as if the distance between sound sources and listener were much shorter. The 

general rule, therefore, is to make sure that the distance from sound sources to 

microphones will be below about 50 cm (for solo singing or playing) or only a few 

meters, depending on the size of the orchestra or choir. (For binaural audio it should be 

more appropriate to position the artificial head just in front of the musical orchestra 

instead of a position in the audience space.) 
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Appendix I: Fourier series 

 

 

The cross-correlation factor of two signals of equal duration T can be expressed by: 

  (I.1) 

which simply means the value of the definite integral of their multiplication. As a direct 

application of this correlation factor we can use it to find the values of the components 

of the Fourier series. We know that the Fourier components only exist at multiples of 

1/T and that the phase of a sinusoidal wave component can be accomplished by 

summing a sine and a cosine component having a proper amplitude ratio. So, if we 

correlate each sine and cosine wave with the signal over the interval T we get the ‘best 

fit’ of all individual components. 

 

Strictly, this can only be done when the component values are independent of each 

other. The ‘optimal’ amplitude of one component should not have any influence on the 

optimal value of any other. This requirement is fulfilled by sines and cosines: they are 

orthogonal. It means that multiplication of only sine and cosine components with 

different frequencies should result in a zero mean. In addition, the optimal sine 

amplitude and corresponding cosine amplitude are independent of each other. In fig. I.1 

two sinusoidal signals with different amplitudes and frequencies together with their 

products are displayed.  

 

Fig. I.1. Orthogonality shown by multiplication of frequency components. Left column: 
different frequencies produce zero mean. Mid column: equal frequencies and equal phase 
produce non-zero mean. Right column: sine and cosine wave with equal frequencies 
produce zero mean. Other phase differences than π/2 result in non-zero mean values. 
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The multiplication of sinusoidal signals with different frequencies always results in a 

waveform of which the areas above and below the x axis are equal so that the mean is 

zero. When the frequencies are equal the mean value then depends on the phase 

difference. A phase difference of π/2 (i.e. a sine and a cosine) results in a zero mean. 

Any other phase difference results in a non-zero value. 

 

The orthogonality implies that each component correlation with the signal does not 

contribute to the other component correlations. Now we can write, for example, the 

formula for all Fourier cosine components: 

  (I.2) 

where k is any integer from 0 to infinity. (Because of the fact that the Fourier series 

always use an integer number of periods of the sine or cosine components, their 

contribution to each period of the signal is the same. Therefore, the integral interval can 

be limited to the period boundaries, according to formula I.1.) Likewise, for the sine 

components: 

  (I.3) 

These component values being correlations become higher when T gets longer. For 

amplitude values we must divide by the interval time T so that the values are 

independent of the interval length and the spectrum becomes an amplitude spectrum. 

Furthermore, we must multiply by two because the multiplication of two equal 

sinusoidal waves of amplitude 1 gives a mean of 0.5. Then, the final formulas for the 

Fourier amplitude components become: 

  (I.4) 

  (I.5) 

(In Praat, this division by T is not applied which implies that Praat's spectra are density 

spectra.)  

 

What if k = 0, or in other words, what is the component value at zero frequency? It 

follows from the formulas that b0 = 0 as sin (0) = 0 and a0 is the mean of the signal as 

cos (0) = 1. This a0 is the ‘DC component’ of the signal (DC stands for ‘direct current’). 

For most practical audio signals this DC value is zero or very near zero and in general 

it can be neglected. See part B for more about DC levels.  
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So, writing any periodical signal as the sum of sine and cosine components leads us to 

the formula for the Fourier series of a periodical signal: 

  (I.6) 
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Appendix II: Complex representation of sinusoids 

 

Using complex numbers is not essential for some understanding of the signal analysis 

within the scope of this book. My hope is, however, that you’ll be willing to follow the 

explanations in this appendix and gradually see the beauty of this way of handling 

sinusoidal waves. First of all, the reward for thinking in this way is the great power of 

the mathematics used. And possibly it might be satisfying to discover how imagination 

can lead to a powerful tool for calculations with real signals. 

 

II.1. Complex plane 

 

Let's think about a coordinate system with a ‘normal’ x-axis and an ‘imaginary’ y-axis 

(see fig. II.1). Any position on this plane can be defined by two coordinates: a on the 

horizontal axis and b on the vertical axis. The horizontal axis represents real ‘existing’ 

numbers and the vertical axis represents imaginary numbers. This stems from the 

expression √-1 which we learned as having no meaning. There is a symbol for this 

function-without-meaning: the symbol j. (In mathematics books the symbol i is mostly 

used, but in the field of engineering this i is already used to represent electrical current, 

hence the j to prevent 

confusion.)  

 

Now, when we represent a 

number on this plane we can 

define it by (a, bj) for example, 

which simply implies that we 

go a distance a from the origin 

in the direction of the 

horizontal axis and a distance b 

in the direction of the vertical 

axis. This is the Cartesian 

notation of the number. Any 

number in the plane can be 

represented in the form of z = a 

+ bj which is called a complex 

number. A line from the origin 

to the defined position in the 

plane is called a vector. It has 

a magnitude (the length of the vector) and a phase (the angle of the vector with the 

horizontal axis). If we express the position in the plane by these values we use the polar 

notation of the complex number. 

 

 
Fig. II.1. Complex plane. Multiplication of a 
complex vector by j results in an angle rotation 
of π/2 radians. 
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Whether or not the symbol j has meaning, we know that . Then, if we multiply 

a complex number z = a + bj by j we get the number -b + aj. That turns the vector π/2 

radians (= 90 degrees) counterclockwise. Multiplying again with j yields -a - bj which 

causes another turn of π/2 radians counterclockwise and which obviously results 

into - z. We see that each multiplication with j is equivalent to increasing the angle with 

π/2 radians.  

 

But what happens when we multiply the vector by √j ? We can solve this problem by 

considering what happens when we repeat that action: then we will have multiplied by 

j which turns the vector over an angle π/2. So, multiplication by √j (or j1/2) apparently 

turns the vector half the angle, or π/4. Likewise, we can apply this trick for any fraction 

of the power of j. The amount of rotation can be set to any value, positive or negative. 

We see that the power of j defines the angle. 

 

In polar notation this vector z can be written as: 

  (II.1) 

where A represents the magnitude and φ the angle with the horizontal axis. If A = 1 then 

the positions for all values of z lie on the unit circle having a radius of 1. 

 

We can now think of a rotating vector if we vary the angle as a function of time, thus 

creating a sinusoidal wave: 

  (II.2) 

This z(t) is no real sinusoidal wave: we have created a complex sinusoidal wave. The 

great advantage of manipulation with complex sinusoidal waves will be clarified some 

more in the next appendices. 

 

If we want to create a real sinusoidal wave on the complex plane there is a trick: we 

use two complex rotating vectors. For example, if we write 

  (II.3) 

the result is the real cosine A cos (ωt). As sin x = - sin (-x) and cos x = cos (-x) we may 

write: 

  (II.4) 

Fig. II.2 shows the graphical representation: we have one vector rotating in the ‘normal’ 

counterclockwise direction and a vector rotating in the opposite direction which is the 

complex conjugate of the first vector. Each vector has half the amplitude. The b values 

on the vertical axis always cancel each other out. The result lies always on the 
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horizontal, real axis and is equal to A cos (ωt). In any position of the vectors they are 

each other’s complex conjugates. 

 

Fig. II.2. Real cosine and sine wave construction by adding two complex vectors, rotating 
in opposite directions. 
 

In the same way the real sine wave  can be made by changing the sign of the 

second vector. Now the a values on the real axis cancel each other and the result of the 

sum of these vectors lies always on the imaginary axis, which means that we have to 

divide by j: 

  (II.5) 

Thus, for the construction of real sinusoidal waves using complex waves we need their 

complex conjugates, and therefore negative frequencies. 

 

If we use complex sinusoidal waves let's see what happens when we multiply two 

different vectors: 

  (II.6) 

This leads to: 

  (II.7) 

According to our secondary school knowledge (see also the box called 

MULTIPLICATION OF TWO SINE WAVES in section 10) the first half of the formula 

equals cos (α + β) and the second half j sin (α + β): 

  (II.8) 

Applying to complex sinusoidal waves: 
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  (II.9) 

which shows that multiplication of two complex sinusoidal waves produces one 

complex sinusoidal wave with only the sum of the individual frequencies. 

 

If the two vectors are the same ( ) then we can write: 

  (II.10) 

If we multiply the result once more with the original cos (ωt) + j sin (ωt) we get the 

sum of 2ω and ω which is 3ω and so on. In general: 

  (II..11) 

This is de Moivre's formula. As a consequence, multiplying a complex sinusoidal 

waveform with itself a few times shifts its frequency ω radians higher each time. 

 

The fact that multiplication of complex sinusoidal waves produces only sums of 

frequencies, not differences, is also true for negative frequencies which we can find out 

by multiplication of two different vectors rotating in the opposite direction: 

  (II.12) 

Substituting α for  and β for  yields: 

  (II.13) 

which simplifies to: 

  (II.14) 

Applied to sinusoidal waves: 

  (II.15) 

which is a vector rotating in the opposite direction at the sum of the frequencies.  

 

As a consequence, when a vector with a positive rotation and another vector with a 

negative rotation are multiplied, the result is a vector rotating at the difference of the 

frequencies. 
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II.2. Complex exponentials 

 

The great Swiss mathematician Leonhard Euler found an alternative way to express 

complex numbers in polar notation using complex exponentials, known as Euler's 

relation: 

  (II.16) 

The proof of this relation normally is done by using Taylor power series for sine and 

cosine: 

  (II.17) 

  (II.18) 

and the power series for the e exponential: 

  (II.19) 

As j2 = -1 substituting jφ for z in this formula gives us: 

  (II.20) 

If we arrange the terms so that the even and odd powers each are grouped separately, 

we will get: 

  (II.21) 

Substitution by using formulas (II.17) and (II.18) leads directly to Euler's relation 

(II.16). 

 

The mathematical proof of the Taylor exponential series being rather complicated, we 

will have to take the explanation for granted at this point. Many books on general 

mathematical analysis deal with these problems. To gain some insight in the 

approximation mechanism of the sine and cosine of the Taylor series, we can run 

DEMO.II.2.1.script and DEMO.II.2.2.script. These show us the result after each 

addition of a term. Adding terms improves the approximation over a wider and wider 

area from the center (zero) and only a couple of terms (say, 5 or 6) are sufficient to 

approximate one sine or cosine ‘period’ quite accurately. 
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The Taylor series for sine and cosine also teach us also something about the radian. If 

we run our DEMOs II.2.1 and II.2.2 we can define a scale factor in the starting window. 

If we choose the default value (1) we see that the ‘period’ of the sine or cosine, i.e. the 

angle of a complete circle, is equal to 2π! So, the reason for defining a complete circle 

with an angle of 2π is a very practical one: this factor emerges from the relation between 

the path of the moving vector (which represents a part of the circle circumference of 

the rotating vector) and the angle of the sine or cosine, given by the Taylor series. 

(When using radians, the sine of an infinitesimal angle equals the angle itself, on which 

property the Taylor series is based.) As you know, this radian is not necessarily the only 

way to define angles (see the box called THE RADIAN in section 5). It is perfectly valid 

to define the angle of the complete circle as 1 so that the angular velocity is the same 

as the frequency. However, to make use of the convenient Euler relation, we must 

accept this factor 2π, no matter how we define the angles. If you like 360 degrees in the 

circle, for example, you have to fill in a factor 2π/360 in the demo starting window. 

Then a ‘period’ of the sine or cosine runs from -180 to 180 as you see. As a 

consequence, the new angular frequency ω’ then simply would be 360f instead of 2πf.  

 

The reason this radian story is emphasized somewhat is because many people seem to 

think that the radian has fundamental properties and that the only way to calculate 

things in the field of frequency analysis is to use the relation ω=2πf, which definitely is 

not true. It has only one practical reason: using the Euler formula greatly simplifies the 

math but, at a small price, it needs the factor 2π! 

 

If you do not like the use of Taylor series to prove the Euler relation there is another 

way that uses direct and simple calculus (for example by Freeman [4]): 

 

To prove: 

  (II.22) 

we can regard the right side of the formula as some complex function: 

  (II.23) 

Take the 1st derivative of both sides: 

  (II.24) 

As j2 = -1 we may write: 

  (II.25) 

which means that: 
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  (II.26) 

This important relation shows us that in order to get the first derivative of a complex 

sine wave, we simply have to multiply it with j! Now, we multiply both sides with 

:  

  (II.27) 

and integrate both sides: 

  (II.28) 

Combining the constants yields: 

  (II.29) 

where c is a complex constant. To calculate this constant, we substitute 0 for φ: 

  or:  (II.30) 

That implies that , so  which simplifies our formula to: 

  (II.31) 

Write both sides as a power of e: 

  (II.32) 

which brings us Euler's formula: 

  (II.33) 

As we know now that Euler's relation must be true, we can use it to express the sine 

and cosine waves from formulas (II.4) and (II.5) with their complex exponential 

versions: 

  (II.34) 

  (II.35) 
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Compared to formulas (II.4) and (II.5) these forms look much simpler. What's more, 

the mathematical manipulations with these exponentials are a great deal easier to 

perform. As an example, let us multiply two complex sine waves again: 

  (II.36) 

This leads straight to: 

  (II.37) 

which shows directly that we get the sum of the frequencies, as in formula (II.9). 

 

Multiplying a sine wave with itself n times: 
 

  (II.38) 

produces the exponential form of De Moivre's formula (II.11) ready-made. 

 

When dividing complex sine waves, we simply subtract the one frequency from the 

other, instead of adding the frequencies, which is quite trivial here. And, again, if we 

want a real sinusoid, we add a second vector that rotates in the other direction, 

according to formulas (II.34) and (II.35).  
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II.3. Complex Fourier transform 

 

The previous section showed us how to define a complex sinusoidal wave in 

exponential form: . If we apply this to the Fourier series formula I.6 of 

appendix I we get a complex Fourier series formula: 

  (II.39) 

where rn must have some relation to the an and bn coefficients. In fact, this equation 

represents a series of complex vectors rotating in positive direction for positive n and 

in negative direction for negative n. As we have seen, complex vectors can be converted 

into real ones by adding equal vectors rotating in the opposite direction. This explains 

the expansion of the range for n with negative values: here we need the negative 

frequencies, whereas in the case of the Fourier series the index n is limited to positive 

values only. If we make sure that part of rn consists of ak/2, the positive and negative 

rotating vectors of that part of the function then add up so that we get real cosines with 

amplitude an. Next, if we care for the rest of rn to contain the value –jbn/2 for positive n 

and jbn/2 for negative n we get real sine components. Concluding, we can write for rn: 

  for n > 0,  for n < 0 (II.40) 

If n = 0 we get the mean of the signal so that r0 = a0. So, in general, the exponential 

coefficients of the Fourier series are complex. Only when a coefficient pair rn and r-n 

both are real, it is a cosine. When both members of the pair are imaginary it is a sine. 

All this should not be very surprising, considering the explanations in appendix II.1 

about the complex representation of sinusoids. 

 

Using formula II.40 we can now replace the value rn in formula II.39 by the values for 

ak and bk of the formulas I.4 and I.5 from appendix I. If n is positive we get: 

  (II.41) 

Using Euler’s formula, we may write: 

  (II.42) 

If n is negative we can use the identities cos(-x) = cos (x) and sin (-x) = -sin (x). We can 

see that for negative n the result is the same: formula II.42 is valid for all values of n 
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(the value 0 results in the average of the signal’s period). The formula II.42, therefore, 

is the complex equivalent of the Fourier components of a periodic signal (formula. I.6). 

 

In section 9 the concept of continuous spectra was introduced by way of the time insert 

experiment. We let the period length increase to infinity. At that point, the distance 

between the spectral components at the frequency axis will have been decreased to zero. 

The number of Fourier components is then infinite for any frequency interval. While 

time T in formula II.42 increases, ω0 tends to zero. The value rn tends to zero as well. 

The product rnT, however, remains a measure for the frequency component values. If 

we represent that product as X and define it as a function of ω we are now able to change 

formula II.42 into its continuous form: 

  (II.43) 

which transforms a once-occurring time signal into its continuous spectrum. 

 

When we substitute X(ω)/T for rn in formula II.39 we may write: 

. To convert this discrete function into 

the continuous version we replace nω0 by ω and, as ω0 becomes infinitesimally small, 

ω0 by dω:  

  (II.44) 

which is the reverse transform: it transforms a continuous spectrum into its time-limited 

once-occurring time function. 

 

The functions in formulas II.43 and II.44 are known as the Fourier integrals.  

 

Using formula II.43 to calculate the Fourier transform of the single rectangular pulse 

we may write: 

  (II.45) 

Applying Euler’s formula this can be written as: 

  or  (II.46) 

which represents the well-known sinc function. 
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There is a striking symmetry in the Fourier integral formulas II.43 and II.44, as you see. 

(The factor 2π stems from the use of the radian instead of the hertz for the frequency.)  

When the time function is even, the time-frequency symmetry is ideal, which can be 

shown as follows. Reversing the time by substituting -tR for t in formula II.43 reverses 

the integration boundaries so that we can write: 

  (II.47) 

Because the time function is even x(-tR) = x(tR) so that: 

  (II.48) 

This is exactly equal to expression II.44 with interchanged functions x(t) and X(ω). As 

an example, the digital windowed sinc low-pass filter from section 18 uses this time-

frequency symmetry: the spectrum’s pass band is almost perfectly limited according to 

a rectangular function by applying a sinc function approximation as the impulse 

response in the time domain. 

 

All even time functions with their origin in the center have this ideal Fourier symmetry: 

they form a Fourier transform pair. Obviously, all symmetrical window functions (see 

section 13) and their spectra form Fourier transform pairs. 

 

The ultimate symmetry can be found (among others) in the Gauss function. Its time 

function, scaled to 1 at t = 0, is represented by . Using formula II.43 the 

Fourier transform can be written as: 

  (II.49) 

To evaluate this integral we reduce it to the special case when α2 = π: 

  (II.50) 

As we integrate in t there is no objection to multiply the integrand with and correct 

this by multiplying the function with : 

  (II.51) 

Substituting u for t + j∙f gives:  
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  (II.52) 

The function now contains the Gaussian integral which equals 1. The conclusion is that 

the Fourier transform of a Gaussian is also a Gaussian. To apply this to the general 

Gaussian we have to scale the time with the factor . The effect of time 

scaling on the Fourier transform we can evaluate as follows:  

 

If we define a positive scaling factor p then ,  and . We write: 

  (II.53) 

This leads to the equation: 

    (p > 0) (II.54) 

which expresses the time scaling property of the Fourier transform.  

 

When we apply the scaling factor to our originally defined Gaussian function 

we get its transform: 

  (II.55) 

The spectral bandwidth B can be found in a straightforward manner. The -3 dB points 

are given by:  

  or  or  (II.56) 

Therefore: . The difference of these values equals the 

bandwidth: 

   hertz (II.57) 

 

A final example of a function with its Fourier transform is the damped sine wave: 

   (  ≥ 0) (II.58) 
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Using the Euler formula for the sine its Fourier transform becomes: 

   

which evaluates as: 

   

 

A complex vector like e-jωt remains between -1 and +1 when t increases to infinity while 

the multiplier e-αt becomes 0 so we can evaluate the equation into: 

  

This leads to the complex spectrum: 

  (II.59) 

The fact that the spectrum is complex means that it contains sines and cosines which is 

understandable as the damped sine wave is not an even function but a complex function. 

A graph of the real and imaginary parts of the spectrum is shown in fig. II.3. 

 

At f = 0 the imaginary part is 0 

and the real value is equal to the 

average of the time function (the 

DC component). At f = fR the real 

part is not exactly, but very near, 

zero if . In the figure, 

this difference is too small to be 

visible. It means that the spectral 

peak frequency of the damped 

sine spectrum is slightly lower 

than the “original” sine frequency 

ωR. In the box called SPECTRAL 

PEAK POSITION OF DAMPED 

SINE the exact peak frequency is 

calculated. This resonance shift is 
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often negligible: when, for example, every damped sine period amplitude is half of its 

preceding period’s amplitude, the shift is less than 0.6%. 

 

To apply the complex Fourier transform to sampled signals we must bear in mind that 

the sampled signal consists of N samples so that, for t running from 0 to T, the index n 

runs from 0 to N. The time variable changes into . Applying this to 

formula II.42 turns it into its discrete version: 

   (k = 0…N-1) (II.60) 

where k represents the steps in the frequency domain and n the samples in the time 

domain. Because negative indexes of the output array are usually avoided, k runs from 

0 to N-1. Due to the cyclic property of the spectrum of sampled signals it is mirrored at 

the Nyquist frequency so that the ‘negative’ frequencies are positioned beyond the 

Nyquist, i.e. in the range of N/2…N-1. The complete spectrum for positive frequencies, 

therefore, is defined by the complex numbers in the range k = 0 … N/2. 

 

The inverse complex Fourier transform is the sum of the complex Fourier components: 

  (II.61) 
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The damped sine complex spectrum is (formula II.59):  

Multiplying the denominator with its complex conjugate produces the square of its magnitude: 

. 

To calculate the position of its minimum, i.e. the exact frequency of the peak of the amplitude 

spectrum, we take the 1st derivative and set it to 0: 

. One root lies at ω=0 and is of no concern here. Dividing 

by gives: . So, the peak is positioned at . 
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Appendix III: Laplace transform 

 

 

The responses of practical filters start from the moments of excitation (t = 0) and vanish 

some time after the excitation ends. When the Fourier transform is used to describe the 

output signals the once-occurring response is thought to consist of continuous 

sinusoidal waves that go on forever and always existed in the past. It seems, therefore, 

that the Fourier transform will not necessarily be the most suitable tool to define filter 

impulse responses. In fact, the behavior of systems in nature can be described by 

differential equations more adequately than by steady state functions. (Additionally, 

there exist some functions for which the Fourier integral cannot be calculated at all as 

their integral is not convergent.)  

 

When a transform uses damped sines instead of continuous ones this (complex) 

transform can be written like: 

  (III.1) 

Compared to the Fourier transform this function runs from t = 0 instead of t = -∞ and 

the spectral components are complex exponentials. The exponents of e can be combined 

in one complex variable s: 

  (III.2) 

where s = σ + jω. This formula represents the Laplace transform. For the Laplace 

spectrum of the resonator, which has only one damped sine as impulse response, only 

one complex exponential suffices. In that case σ is equal to , the damping factor of 

the damped sine wave. When σ = 0 the Laplace transform changes into the Fourier 

transform. 

 

When we look at the Fourier transform of the resonator (see formula II.59) we can write 

its denominator  as . As this is a 2nd order 

function we can express it by  where p1 and p2 are the roots of 

the function. We can evaluate these roots as 

  (III.3) 

Because the denominator is 0 when jω is equal to a root, the function becomes infinite. 

Therefore, these positions are called poles. The poles of the resonator filter are complex 

conjugates: they form a complex pole pair. Because any function can be expressed by 
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a denominator function of some order n and a numerator of some order m ( = n or lower) 

we can write this as: 

  (III.4) 

For obvious reasons the roots of the numerator are called zeros (in the formula called 

d for dips, so as to avoid confusion with the z-transform which is described in 

appendix IV). Now the poles and zeros of a Laplace transform can be displayed in a 

complex plane, the s-plane, where 

σ is represented on the real axis 

and ω on the imaginary axis. 

(Note that this representation has 

nothing to do with the rotating 

complex vectors of sinusoidal 

waves as covered in 

appendix II.1) In fig. III.1 the pole 

pair of the resonator filter is 

displayed in this way. The 

magnitude of H(s) cannot be seen 

in these pole-zero plots: they 

contain only the positions of the 

poles and zeros in the complex 

plane. To add the magnitude of 

H(s) to the figure an extra 

dimension is needed. However, at 

the poles the magnitude is infinite 

which cannot be represented. Sometimes 3D pictures are published where the function 

at the poles is displayed with strong peaks (see fig. III.2).  

 

Any filter function can be defined by poles 

and zeros. For an example, look at fig. III.3 

for a pole-zero plot of a Butterworth 10th 

order broad band-pass filter consisting of 

five complex conjugate pole pairs and five 

zeros at the origin. In all pole-zero diagrams 

the poles are positioned in the left half of 

the plane, which should be understandable: 

only when σ is negative the exponential 

sine wave components associated with a 

pole pair would decrease in amplitude. Pole 

pairs in the right half of the plane would 

result in unlimited increase of the amplitude 

and therefore in an unstable filter.  
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Fig. III.1. Complex pole-pair of the resonator 
filter spectrum in the complex s-plane. There are 
no zeros in this function. (Zeros normally are 
marked with 0.)  
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The benefit of the Laplace transform lies in the possibility of defining most types of 

(causal) filters by a limited number of poles and zeros which simplifies the complex 

equations. Another useful property of the Laplace transform is that using it for the 

design of analog 

electronic filters, the 

calculation of them 

can be greatly 

simplified. A crucial 

electronic device to 

build a filter is the 

capacitor (also called 

condenser). A 

capacitor can collect 

and hold electrical 

charge when a current 

is flowing through it. 

The longer the 

duration of the current, the higher the charge becomes. It is a current integrator: the 

voltage of the capacitor is proportional to the integral of the current: 

  or, which is equivalent:   (III.5) 

Here v represents the voltage across the capacitor, i the current through it and C a 

constant (the capacitance) which is dependent of the amount of electrical charge 

(proportional to the number of electrons) of the device for a specific voltage. 

 

The opposite is possible with an inductor. The voltage across the device is proportional 

to the speed of current changes. It is a current differentiator: 

  (III.6) 

where L is a constant that represents the inductance of the device. To define a filter 

function, therefore, the functions of formulas III.5 and III.6 are needed within the 

equation which turns it into a differential equation. It describes the filter completely. 

However, the math to calculate a filter of some complexity can become quite difficult. 

The behavior of the filter as regards complex sinusoidal waves can greatly simplify the 

calculation. If we write as a complex sinusoidal wave, according to appendix II.2, 

we get: . Its derivative is then:  

  (III.7) 

By combining formula III.7 with the right part of formula III.5 we can write for : 
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Fig. III.3. Complex pole-pairs of a Butterworth band-pass 
filter in the complex plane. There are five zeros coinciding at 
the origin.  
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  (III.8) 

Now, just like the resistance of a resistor equals the voltage divided by the current 

through it (see the box OHM’S LAW in section 1), the same Ohm’s law can be applied 

to the capacitor:  

  (III.9) 

We do not speak of resistance now but of impedance. The reason is that the impedance 

of a capacitor is no simple quantity but a vector: the phase of a sinusoidal voltage across 

the capacitor is π/2 radians behind the phase of the current through the capacitor. In a 

similar way we can prove that the impedance of an inductor equals: 

  (III.10) 

which means that the voltage across an inductor is π/2 radians ahead of the current 

through it. These impedances are special cases: in general, the phase angle of an 

impedance can have any value. When phase angles 

of π/2 radians are involved, the term reactance is 

used as in the case of capacitors and of inductors. 

Commonly, the character X is used for reactance 

and Z for impedance. For the resistance the symbol 

R is used (which is no vector but a quantity as it is 

frequency-independent and has no phase difference 

between current and voltage).  

 

To illustrate the flexibility of working with 

complex impedances let’s explore a simple case 

(see fig. III.4). The current through all three 

components equals  where z simply is the 

sum of the individual impedances:  

. The output voltage is 

taken from the capacitor. Its voltage is . Substituting  for i 

leads to: 

  (III.11) 

which shows the filter function directly as a 2nd order band-pass with one complex pole 

pair and no zero. The resonance frequency ωR approximates  and the damping 

α is R/(2L) (see the box called RLC RESONATOR for comparison to the “standard” one-

pole-pair filter of equation II.54).  
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Fig. III.4. Second order 
band filter realized by using 
electronic components. 
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Any analog filter basically consists of a combination of several capacitors, resistors 

and/or inductors. When combined with operational amplifiers (semiconductor chips 

that are integrated amplifiers which have almost ideal properties so that in practice the 

behavior of the complete filter system can be completely defined by its formula) the 

filter design possibilities are almost unlimited. The combination of filter components 

with operational amplifiers is called active filters. It is not even necessary to apply 

inductors: they can be simulated perfectly by combinations of capacitors and 

operational amplifiers. The stability, which is always an important issue in analog filter 

design, depends almost solely on the external (passive) components, which can be made 

very stable. In the practical part of the book an example of an active filter is described. 

 

The Laplace transform together with the pole-zero concept provides for a suitable tool 

for calculation of analog filters. Sampled versions of signals, however, open the gate to 

digital filtering. The proper transform for digital signals and filters is the z-transform 

RLC RESONATOR (fig. III.4) 

 

Dividing numerator and denominator of equation III.11 by LC yields: 

 

This resonator transfer function is a second order function with one pole pair and no zeros so that 

the impulse response is a damped sine. To compute the poles, we take the complex roots of the 

denominator: 

 

The real part of the poles so that the damping of the damped sine is equal to 

. Substituting for  yields: .  If we compare this 

with the spectrum of the damped sine (formula II.59) we see that the ‘resonance frequency’  of 

the damped sine is independent of the damping (it is defined by the zero crossing distances) whereas 

the equivalent resonance frequency of this resonator is slightly lowered by the damping.  

For estimation of the peak position we multiply the denominator of formula III.1 with its complex 

conjugate: 

 . Setting 

its 1st derivative to 0 gives:  Dividing by 2ω results in: 

. So, the position of its peak is: .  

Another difference with the formula II.59 is the  instead of  in the numerator. This is only 

a scaling factor. The resonator’s peak level equals  times the level of the peak of equation II.59 

which is typical for practical resonators: the magnitude at resonance can be boosted to high levels 

when the losses in the inductor and capacitor (that work as resistance and are contained within R) 

are low. 
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which is described in appendix IV. The stability and properties of digital filters greatly 

outrank the analog filtering’s possibilities and for this reason the analog filter design 

(and with it the Laplace transform) have become less popular. 
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Appendix IV: Z transform 

 

 

The Laplace transform (see appendix III) of a Dirac pulse centered at t = 0 is: 

  (IV.1) 

As the area of the Dirac pulse is 1 by definition, the Laplace transform of a Dirac pulse 

at t = 0 equals 1. When a delayed Dirac pulse occurs at t = T each frequency component 

is delayed T seconds: 

  (IV.2) 

A sampled signal can be seen as a series of stepwise delayed Dirac pulses, each one 

weighted by the value of the sample at that time: 

  (IV.3) 

where T is the sampling period. Its Laplace transform then will be: 

  (IV.4) 

where s = σ+jω. Defining a complex variable as we can write: 

  (IV.5) 

which represents the z-transform of x(t). Because the power of z equals the number of 

time shifts the function z-1 is called the unit delay function for the function concerned. 

 

When s is purely imaginary it equals jω. In this special case X is a function of 

which means that its complex values all lie on the unit circle, and ω is defined by the 

angle of the vector with the real axis. While ω varies from 0 to infinity the X values are 

repeated every 2π radians.  

 

When s is purely real it equals σ and . At positive values of σ the z values are 

real and >1. If σ is negative the z values exist between 0 and 1. The vector has a 

radius and an angle φ = ωT. Visualizing this in the complex plane presents the 

z-plane (see fig. IV.1).  
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As a consequence, a particular point on the unit circle in the z-plane will correspond to 

an infinite number of 

positions on the 

imaginary axis in the s-

plane, all 2π radians 

apart. This circular 

property stems from the 

sampled nature of the 

time signal which 

implies repeating the 

spectrum and its mirror 

at 2π/T intervals (as 

described in section 17 

about sampling). As in 

the case of all sampled 

signals, the spectral 

information is contained 

in the range from 0 to the 

Nyquist frequency, 

which is covered by the 

angle range 0 to π in the z-plane. The range π to 2π in the lower half forms the mirror 

of the upper half. The polar coordinates of the complex z values being radius r = eσT 

and angle ωT, it follows that the rectangular coordinates are r cos (ωT) for the real value 

and r sin (ωT) for the imaginary value (see fig. IV.1). 

 

For a filter to be stable the poles must lie at the left side of the s-plane (as explained in 

appendix III), which means inside the unit circle of the z-plane.  

 

How can we use the z-transform to compute the recursive coefficients of digital filters? 

In section 18 about digital filters it is shown that a recursive filter that uses a part b of 

the most recent previous output can be defined by: 

  (IV.6) 

When a unit pulse is applied to this filter (then x0=1 and all succeeding x values are 

zero) it will be clear that each next output sample value will become the value of its 

predecessor multiplied with b so that an exponential impulse response will emerge. The 

relation of two adjacent output samples of this filter can be defined as: 

  (IV.7) 

Obviously, the impulse response theoretically runs to infinity as this is an IIR filter. If 

b < 1 the function will decrease exponentially and if b > 1 the function will increase 

exponentially to infinity. If we express the former value as a function of the current 

value we get: 

1−+= nnn ybxy
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Fig. IV.1. Complex pole pair displayed in z-plane. 
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  (IV.8) 

Delaying m positions means m times multiplication by b-1 so that: 

  (IV.9) 

For b we can apply any function, even complex ones. If we use the function z = esT we 

have transformed the function x(t) into its frequency domain by the z-transform: 

  (IV.10) 

Recalling the general formula (18.11) for the recursive filter from section 18: 

  (IV.11) 

we can change its subscripts by applying formula IV.10. We can do this for the output 

array (the y values) as well as for the input array (the dependence of the filter on the 

input and the output is completely defined by the different a and b coefficient values) 

so that formula IV.11 changes into:  

  (IV.12) 

To define the output/input relation of the filter we can manipulate the formula into a 

different form:  so that we can 

write: 

  (IV.13) 

This is the general equation for the z-transform of a system’s transfer function. The 

functions Y(z) and X(z) are not functions of time (or Δt) but are the z-transforms of 

output and input signals respectively. Just like Fourier transforms of output and input 

signals must be divided to get the transfer function, the same applies to the z-transforms 

of the output and the input.  

 

An arbitrary 2nd order filter function, for example, can be defined as: 

  (IV.14) 

Multiplying numerator and denominator with z2 changes the powers to positive values: 

  (IV.15) 
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Because both the numerator and denominator in this example consist of a 2nd order or 

quadratic equation, this function is called a biquad. Obviously, it has two poles and 

two zeros. Theoretically the number of components (here the power of z) of the 

z-transform of an arbitrary function can be infinite. In the case of filters, however, the 

number of components may be very limited because the filter functions in the frequency 

domain are usually much simpler than spectra of sounds analyzed in practice. The 

maximum order to calculate filters can even be limited to 2 because higher orders can 

be built by cascading lower order filter sections like biquads. Cascading then can be 

realized either by multiplying the individual z-transforms of the low order sections and 

extracting the resulting recursion coefficients, or by repetitive filtering of the signal 

with all lower order sections in turn. 

 

To calculate the digital filter coefficients from a complex filter function we use the 

“standard” one pole pair filter of formula II.59 as a simple example. The roots of its 

denominator were calculated in appendix III: . (Its numerator has 

no roots so there are no zeros.) To map these values into the z-plane we must bear in 

mind that σ in the z-transform is equal to –α so that . Furthermore, the angle 

in the z-plane . Starting from its general z-transform we write: 

  (IV.16) 

where  and  so that  

 and . The numerator has two zeros at 

z = 0 which is caused by the multiplication of the whole function with z2. This has no 

influence on the filtering, except for a simple forward time shift of the filter response. 

Because the original complex filter function (formula II.59) has  in its numerator, 

the coefficient , which scales the initial amplitude of the damped sine 

impulse response to 1. The final recursion formula then will be: 

  (IV.17) 

where .  

 

The same algebra can be applied to the biquad’s numerator. Setting the scaling factor 

a0 to 1 will produce similar roots for the numerator as in the case of the denominator: 

 and  (where the d’s refer to the zeros or dips,  to 

the radius of the zero vectors and  to the frequency of the zero). Substituting these 

values in the numerator yields:  and . The complete set 

recursive coefficients for the biquad then will be: 
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where  is the pole frequency, the zero frequency,  the pole vector radius and 

 the zero vector radius.  

 

The zeros of a function can be placed anywhere in the z-plane, even on the unit circle. 

The system then remains stable: the function is zero for the frequency defined by the 

angle. As an example, let’s add two zeros on the unit circle at the same angles as those 

of the pole vectors, see fig. IV.2. In the equations of the biquad recursive coefficients 

we simply substitute 1 for  and  for . The result is a notch filter that completely 

suppresses the specified frequency.  

 

For the filter impulse response to be real, the poles and zeros in the upper half must be 

mirrored in the lower half of the z-plane, or else be positioned on the real axis. 

 

From the pole-zero positions in the z-plane it is not very difficult to get an impression 

of the magnitude of the filter function at a specific frequency by using formula III.4 

which is repeated here: 

  (IV.18) 

So, from the position of a frequency on the unit circle all distances to the zeros must be 

multiplied and the result divided by the product of all distances to the poles. As the 

poles and zeros in the upper half have their mirrors in the lower half, it suffices to do 

this for one half of the plane only. 
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Fig. IV.2. Notch filter realized by adding zeros to a pole pair filter. 
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For a comparison of the s-plane and the z-plane, fig. IV.3 depicts the poles and zeros 

of the broad band Butterworth filter from appendix III (fig. III.3) in the s-plane as well 

as in the z-plane. Often the multiple zeros on the same position are drawn as concentric 

circles, as can be seen in the figure. You see that the poles in the z-plane are positioned 

very near the unit circle. This follows from the fact that and the sampling 

period T in practice is very small so that r will be close to 1. In fact, r is the amplitude 

decay factor of the damped sine within the short sampling interval. This means that the 

number precision of the computer used has to be sufficiently high, especially at high 

sampling frequencies and higher order filters. 

 

In the z-plane the positions of the poles and zeros depend on the sample frequency, as 

their angles are proportional to T, the sampling period.  

 

This section about the z-transform certainly is not the whole story. Many sophisticated 

filtering methods using the z-transform (or modified z-transform) have been developed 

and much more could be said about the subject. The purpose of this appendix, however, 

is only to explain something about the basic z-transform principles. For more 

information, there are many books with extensive explanations and math concerning 

the z-transform.  
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Fig. IV.3. Comparison of poles and zeros in s-plane and z-plane of 10th order 
Butterworth band-pass filter from appendix III. 
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µ-Law, 172 

A 

absorption, 129 
atmospheric, 7 

AC, 221 
ADC, 98, 172, 208 
ADPCM, 175 
A-Law, 172 
alias, 100 
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AM, 57 
amplitude, 12 
analysis 

bandfilter, 136 
narrow band, 142 
wide band, 142 

antiformant, 130 
artificial 

glottal pulse, 126 
head, 8, 230 
vowel, 205 

A-weighting, 211, 223 
axis 

imaginary, 238 
real, 238 

B 

balanced output, 227 
bandfilter 

Gaussian, 137 
bandwidth, 37 

constant percentage, 135 
critical, 185 

Bell, 10 
binary offset, 106 
binaural audio, 230 
biquad, 259 
bitrate, 166 
Bolzmann, 86 

C 

calibration 
SPL, 199 

capacitor, 220, 252 
carrier, 56 
cascade, 43 
cavities, 125 
CD 

quality, 166 
cent, 189 
cepstrum, 139 

chord, 93 
clipping, 204, 214 

level, 207 
code 

binary, 169 
fixed-length, 169 
symbol -, 167 
variable length, 167 

coding 
linear predictive, 143 
mp3, 176 
speech, 145 

complex 
conjugate, 237 
exponentials, 240 
Fourier transform, 244 
numbers, 42 
pair, 121 
plane, 236 
representation, 64, 195, 236 
sinusoidal wave, 237 
spectrum, 161 
vector, 248 

compression 
factor, 170 
lossless, 166 
lossy, 166 
ratio, 170 
signal, 146 
sound data, 166 

compressor, 217 
configuration 

AB, 229 
MS, 229 
XY, 229 

consonance, 184 
consonant, 126, 188 
contour 

HNR, 164 
intensity, 152, 156 
pitch, 152 

convolution 
frequency domain, 65 
integral, 69 
time domain, 80, 82 

correlation, 89 
auto-, 92 
cc, 89 
cc factor, 27 
cc integral, 91 
cross -, 89 

cross talk, 207 

D 

DAC, 103, 207 
damped sine, 34, 248 
data 
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reduction, 146 
dB 

dBA, 212 
dBu, 206 
dBv, 206 
dBV, 206 
scale, 19 

dB/oct, 45 
DC, 66 

level, 126, 201 
DCT, 176 
decibel, 10 
deconvolution, 83 
delta function, 41 
Delta Modulation, 173 
delta-sigma 

modulator, 173 
demo, 3 
demodulator, 57 
derivative, 127 
detector, 57 
DFT, 26 
diaphragm, 219 

diameter, 227 
differential 

connection, 227 
diplophonia, 162 
Dirac, 41 
directional 

omni -, 226 
uni -, 226 

discontinuity, 19 
dissonance, 185 
distortion, 214 

intermodulation, 215 
linear, 214 
non-linear, 214 
percentage, 216 
quadratic, 214 

distribution 
normal, 86 
random uniform, 105 

domain 
frequency, 15 
time, 15 

doppler effect, 13 
DPCM, 172 

E 

ear drums, 8 
effect 

Bernoulli, 125 
proximity, 226 

encoding 
Huffman, 167, 169, 171 
run length, 171 

epiglottis, 126 
equal temperament, 184 
ET, 184 
Euler, 33, 240 

relation, 240 

F 

farad, 221 
feedback 

negative, 215 
FFT 

disadvantage, 196 
inverse, 197 

field 
electric, 220 
magnetic, 220 

filter, 35 
active, 254 
all pass, 114 
all pole, 145 
band pass, 35 
bank, 135, 176 
cascade, 145 
causal, 42 
custom-designed, 122 
digital, 103, 113 
FIR, 120 
high pass, 43 
ideal, 76, 113 
IIR, 120 
inverse, 145 
kernel, 113 
linear phase, 118 
low pass, 43 
LPC, 144 
moving average, 116 
narrow band, 113 
non-linear phase, 118 
notch, 43, 216, 260 
order, 120 
pass band, 76 
radiation, 127 
real time, 115 
recursive, 116, 258 
section, 144 
slope, 121 
Wiener, 97 
windowed sinc, 115, 137 
zero phase, 42, 118 

flats, 189 
Fletcher and Munson, 211 
floating 

electrically, 227 
floating point, 107 
folding back, 60 
formant, 128, 191 

bandwidth, 129 
ceiling, 146 
measurements, 133 

formula 
de Moivre's -, 239 

forward gain, 224 
Fourier 

- transform pair, 246 
analysis, 20 
FFT, 29 
forward - transform, 31 
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integral, 47, 245 
inverse - transform, 31 
series, 16, 233, 235 
synthesis, 19 

free field, 7 
frequency, 13 

bands, 176 
bins, 87 
carrier, 216 
cross-over, 43, 202 
deviation, 183 
fundamental, 16 
negative, 59 
Nyquist, 100, 257 
of ocurring, 167, 171 
range, 200 
resonance, 34 
selectivity, 183 
table, 170 

fricative, 150 
full scale, 111 
function 

error, 145 
even, 76, 95, 176 
exponential decaying, 120 
gain, 214 
Gauss, 246 
quadratic, 216 
sampled version, 39 
sinc, 73, 130 
time, 22 
unit delay, 256 

G 

gain, 44 
Gauss, 74 
Gaussian 

distribution, 86 
guard band, 100 

H 

half tone, 189 
harmonic, 183 
harmonicity, 163 
harmonics, 16 
harmonious, 185 
headroom, 208 
hearing 

threshold, 11 
Hertz, 13 
HNR, 163 

I 

impedance, 219 
impulse response, 41, 76, 83, 246 
inductor, 252 
in-line, 119 
integral, 193 

Gaussian, 247 

intensity, 6, 156 
interpolate 

DFT components, 140 
interpolation, 48 
interval 

harmonic, 185 
intonation, 152 

J 

Jecklin disc, 231 
jitter, 162 
JND, 183 
Just Noticable Difference, 10 

L 

lifter, 139 
limiter, 208, 217 
line level, 205 
lobe 

main, 131 
side, 131 

loss 
factor, 48 
spreading, 6 

loudness, 212 
LPC, 143, 175 

analysis, 146 
LSB, 107 
LTAS, 70, 161 

M 

major scale, 189 
masking, 176 
MDCT, 178 
measurement 

pitch, 153 
microphone, 219 

condenser, 220 
digital, 180 
dynamic, 219 
electret, 221 
head-mounted, 223, 227 
HF condenser, 222 
ribbon, 220 
sensitivity, 220 
shotgun, 225 
USB, 223 

modulation, 162 
amplitude, 56 
depth, 56, 183 

modulator 
delta-sigma, 175 

monophonic, 183 
moving coil, 219 
MPEG, 176 
MSB, 106 
music 

key, 187 
musical 
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ecucation, 185 
interval, 185 

N 

node, 169 
noise, 85 

- floor, 210 
background, 209 
brown, 88 
machine -, 202 
pink, 88 
purple, 88 
sample -, 208 
sampling, 104 
self -, 223 
suppression, 180 
thermal, 85, 210 
white, 87 

normal distribution, 74 
notation 

Cartesian, 236 
polar, 236 

number 
Cartesian notation, 236 
imaginary, 236 

numbers 
integer, 107 
real, 107 

Nyquist, 100 

O 

octave, 183 
Ohm's law, 8, 86, 253 
order 

2nd, 134 
LPC filter, 147 
second, 36 

orthogonal, 233 
oscillator, 191 
overlap, 141, 178 
overload, 204 
overmodulation, 207 
overtone, 21, 183 

- singing, 132 

P 

panning, 228 
parallel, 44 
Pascal, 7 
PCM, 106, 172 
peak 

detection, 143 
perception 

speech, 132 
period, 16 
periodicity, 154 
phantom powering, 222, 227 
phase, 20 

difference, 8, 228, 234 

distortion, 45 
linear, 46 

phon, 211 
phoneme, 141 
pitch, 152, 153, 183 

contour, 93 
plosive, 150 
point source, 7 
polar pattern, 224 

cardioid, 224 
figure-of-eight, 224 

pole, 145, 250, 260 
polyphonic, 184 
Praat, 3 

installation, 3 
pre-amp, 208 

low noise, 220 
pressure 

sound, 7 
probability, 167 

of occurrence, 170 
propagation, 6 

speed, 90 
prosodic 

features, 152 
pulse 

glottal, 125 
rectangular, 245 
short, 22 

Pythagoras, 188 
theorem, 24 

Q 

quefrency, 139 

R 

radian, 23, 241 
random 

fluctuations, 150 
range 

amplitude, 215 
dynamic, 135 

ratio 
formant/F0, 133 
harmonics-to-noise, 163 
S/N, 180 
signal-to-noise, 210 

reactance, 253 
redundancy, 167 
repetition rate, 38 
resolution 

frequency, 142 
spectral, 138 
time, 142, 156 

resonance box, 191 
resonator, 33 

Helmholz, 128, 191 
RLC, 253 

rhythm, 183 
ripple, 123 
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F0, 135, 143 
pitch, 156 

rms, 105, 195 
roll off, 18 
root mean square, 25 
rotate, 123 
rotation, 237 

S 

S/N, 210 
sample 

spectral, 133 
sampling, 98 

theorem, 100 
script 

INIT, 4 
Praat-, 3 

semitone, 189 
sensitivity 

directional, 224 
input, 204 

Shannon, 100 
reconstruction theorem, 101 

sharps, 189 
shimmer, 163 
short term 

amplitude variations, 165 
side band, 57 
side lobe, 196 
side lobes, 71 
signal 

comparison, 26 
error, 104 
multiplying -s, 52 

signals 
periodic, 16 

signal-to-noise-ratio, 88 
sine cardinal, 73 
slope, 45, 214 

spectral, 144, 148 
smoothing 

cepstral, 139 
frequency domain, 150 

soft palate, 125 
sound, 6 

musical, 183 
nasal, 125 
oral, 125 
periodic, 24 
spatial, 8 
surround, 9 
voiceless, 150 

spectral 
bin width, 161 
leakage, 29, 109 
magnitude, 195 
peak position, 248 
subtraction, 180 

spectral line, 14 
spectrogram, 140 
spectrum, 14 

amplitude, 15, 234 
continuous, 41, 47, 245 
density, 193, 194 
long term, 142 
long time average, 161 
power, 15 
Praat's, 193 
short term, 142 

speech 
intelligibility, 203 
overall properties, 161 
production, 125 
rate, 159 
unvoiced, 150 
voiced, 125 

SPL, 7 
s-plane, 251 
spurious, 123 
SSB, 57 
steady state, 80 
stereo, 90, 166 

artificial head, 230 
coincident, 229 
intensity, 179, 229 
MS -, 179 
recording, 228 

streaming, 166 
string, 190 
suprasegmental, 152 
swept band filter, 134 
syllable, 159 
symmetry, 31, 76, 246 

half wave, 31 
system 

linear, 22, 36 

T 

Taylor 
series, 240 

temperament 
Pythagorian, 188 

theorem 
reconstruction, 139 

threshold 
voicing, 154 

timbre, 130, 150, 191 
time 

collision, 126 
insertion, 198 

tracking 
period-for-period, 148 

transducer, 180, 200, 219 
pressure, 224 
pressure-gradient, 224 

transfer function, 36, 121, 258 
transform 

Fourier, 26 
Laplace, 250 
z, 121, 145, 254, 256 

transient, 74, 208 
transpose, 187 
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triplophonia, 162 
truncate, 137 
tube 

electronic, 216 
resonant, 128 

tuning, 191 
just, 190 
system, 187 

U 

unit 
circle, 257 
pulse, 257 

unit circle, 237 

V 

vector, 22, 236 
magnitude, 236 
phase, 236 

velocity 
propagation, 6 

velum, 125 
vibration 

vocal folds, 150 
vibrato, 162, 190 
vocal 

cords, 125 
folds, 125 
tract, 125 

voice 
pathological, 165 
singing, 190 

volume, 156 
acoustical, 206 
control, 206 
Volume Units, 208 

vowel, 125 
artificial, 205 
nasal, 148 
sustained, 163 

whispered, 126, 150 

W 

Watt, 7 
wave 

in air, 6 
sine, 12, 22 
triangle, 17 

waveform, 12 
distortion, 111 
sawtooth, 18 
speech, 156 

wavelength, 13 
half, 129 
quarter, 128 

waves 
rectangular, 22 

Weber's law, 10, 183 
whole tone, 189 
window, 70 

Bartlett, 79 
Blackman, 77 
exponential, 74 
Gaussian, 75 
Kaiser, 77 
length, 153 
moving, 140 
position, 143 
rectangular, 71 

windowed sinc 
cepstral smoothing, 137 

windowing, 196 
wolf tone, 192 

Z 

zero, 251 
offset, 201 

zero-padding, 196 
zeroth order, 101 
z-plane, 256 

 


